Telomere structure and function in Arabidopsis
拟南芥端粒结构和功能
基本信息
- 批准号:10455761
- 负责人:
- 金额:$ 37.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-05-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AngiospermsAnimal ModelAntioxidantsArabidopsisBase Excision RepairsBinding ProteinsBiologyCell NucleusCell SurvivalCellsChromosomesComplementCytoplasmCytoplasmic OrganelleDNADNA DamageDataDevelopmentDiseaseEukaryotaExhibitsExperimental DesignsGene DuplicationGeneticGenomeGenome StabilityHumanLeadLesionLinkMale InfertilityMalignant NeoplasmsMammalian CellMammalsMetabolismMitochondriaModelingMolecularMolecular ProbesMonitorMouse-ear CressMutationOxidative StressOxygenPathway interactionsPlantsPost-Translational Protein ProcessingPredispositionProteinsRNA SplicingReactive Oxygen SpeciesRegulationResearchResourcesRoleSignal TransductionSourceStressStructureTERT geneTelomeraseTelomere MaintenanceTelomere PathwayTestingVariantWorkassaultbiological adaptation to stressexperimental studygenome integrityinsightmacromoleculemale fertilitymultiple omicsmutantnoveloxidative damageparalogous geneplant growth/developmentprotein functionrepairedreproductivereproductive developmentresponsestem cellstelomeretrafficking
项目摘要
Project Summary:
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism. Environmental assaults can
dramatically elevate ROS, overwhelming the defenses of cellular antioxidants, and triggering damage to essential
macromolecules particularly DNA. Oxidative damage is linked to numerous disease states, but despite much
research, fundamental questions remain on how cells avert the detrimental impacts of ROS. Mounting evidence
implicates telomere proteins in functions beyond the chromosome terminus. Both Protection of Telomeres 1 (POT1)
and the telomerase catalytic subunit TERT traffic in and out of the nucleus and are implicated in various aspects
of the response to oxidative damage in mammalian cells. However, unmasking potential non-telomeric functions
is problematic because of their critical roles in telomere maintenance and stability. In this renewal application, the
model eukaryote Arabidopsis thaliana is employed to study how telomere-associated proteins (TAPs) respond to
and mitigate oxidative stress. Arabidopsis encodes two highly divergent POT1 paralogs, AtPOT1a and AtPOT1b,
which exhibit separation-of-function with respect to canonical telomere biology, and hence present a unique
opportunity to elucidate the full complement of POT1 functions. The proposal builds on additional preliminary
showing that AtPOT1b accumulates in the cytoplasm, and loss of AtPOT1b significantly elevates ROS and
activates numerous cellular defenses against oxidative stress. AtTERT carries a mitochondrial localization signal,
suggesting that it too may regulate the response to ROS. The central hypothesis of this proposal is that the TAPs,
AtPOT1a, AtPOT1b and AtTERT, serve important roles in the cellular defense against oxidative damage. This
hypothesis will be examined through two Specific Aims. For Aim 1, the breadth of POT1 functions in promoting
genome integrity will be assessed by testing how POT1a and POT1b regulate oxidative damage in telomeric and
non-telomeric DNA, and how POT1b cooperates with POT1a and TERT to avert genome destabilization. The role of
ATR signaling in reproductive progenitor cells will be examined in pot1b mutants. Finally, the evolutionary origin of
stress response functions in POT1 proteins will be explored. In Aim 2, three complementary strategies will probe the
molecular mechanism and interaction partners of TAPs in non-telomeric pathways. These include monitoring the
subcellular trafficking of TAPs in response to stress, quantitative mass spec to identify protein binding partners and
stress-induced post-translational modifications, and a novel suppressor screen to explore the genetic pathway that
enables POT1b and TERT to promote plant development. These studies will increase understanding of the cross-
talk between TAPs and the stress response, open new horizons for exploring the non-canonical functions of POT1,
and provide a roadmap to explore rare splice variants of human POT1 that cannot associate with telomeres, and
yet are associated with increased predisposition to cancer.
项目摘要:
活性氧(ROS)是氧代谢的天然副产品。环境攻击可以
急剧提升ROS,压倒了细胞抗氧化剂的防御,并触发了必要的损害
大分子特别是DNA。氧化损伤与许多疾病状态有关,但尽管
研究,关于细胞如何避免ROS的有害影响的基本问题。越来越多的证据
在染色体末端以外的功能中暗示端粒蛋白。两种保护端粒1(POT1)
以及端粒酶催化亚基TERT流量进出核,与各个方面有关
哺乳动物细胞中对氧化损伤的反应。但是,揭示潜在的非质体功能
由于它们在端粒维护和稳定性中的关键作用,因此有问题。在此续订应用程序中
模型真核生物拟南芥用于研究端粒相关蛋白(TAP)如何反应
并减轻氧化应激。拟南芥编码两个高度不同的POT1旁系同源物,ATPOT1A和ATPOT1B,
相对于规范端粒生物学表现出功能分离,因此提出了独特的
阐明POT1功能的完整补充的机会。该提案以其他初步为基础
表明ATPOT1b积聚在细胞质中,而ATPOT1b的丧失显着升高ROS和
激活许多针对氧化应激的细胞防御措施。 Attert带有线粒体定位信号,
表明它也可能调节对ROS的反应。该提议的核心假设是Taps,
ATPOT1A,ATPOT1B和ATTERT,在防止氧化损伤的细胞防御中起重要作用。这
假设将通过两个具体目的进行检查。对于AIM 1,POT1的宽度在促进中起作用
基因组完整性将通过测试POT1A和POT1B如何调节端粒和
非telomeric DNA,以及POT1B如何与POT1A合作,并避免基因组不稳定。的作用
在POT1B突变体中将检查生殖祖细胞中的ATR信号传导。最后,进化起源
将探索POT1蛋白中的应力反应功能。在AIM 2中,三种互补策略将调查
在非tep途径中的TAP的分子机制和相互作用伙伴。这些包括监视
响应压力,定量质量规格以鉴定蛋白质结合伙伴的响应龙头的亚细胞运输,并
压力引起的翻译后修饰和一个新型的抑制筛查,以探索遗传途径
使POT1B和TERT能够促进植物开发。这些研究将增加对跨的理解
水龙头与压力反应之间的对话,开放的新视野,用于探索POT1的非规范功能,
并提供路线图来探索无法与端粒相关的人类Pot1的稀有剪接变体,并且
然而,与癌症的易感性增加有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dorothy Shippen其他文献
Dorothy Shippen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dorothy Shippen', 18)}}的其他基金
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Redox stress resilience in aging skeletal muscle
衰老骨骼肌的氧化还原应激恢复能力
- 批准号:
10722970 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Developing trimester-specific placenta organ-on-chips to model healthy and oxidative stress and inflammation-associated pathologies
开发妊娠期特异性胎盘器官芯片来模拟健康和氧化应激以及炎症相关的病理学
- 批准号:
10732666 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Synergistically Target Mitochondria for Heart Failure Treatment
协同靶向线粒体治疗心力衰竭
- 批准号:
10584938 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Severe neonatal hyperbilirubinemia (SNH) and the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) play key roles in the development of necrotizing enterocolitis (NEC)
严重新生儿高胆红素血症 (SNH) 和 UDP-葡萄糖醛酸基转移酶 1A1 (UGT1A1) 的表达在坏死性小肠结肠炎 (NEC) 的发生中起关键作用
- 批准号:
10713549 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别: