Neural circuit theory and trained recurrent network modeling of rapid learning
神经回路理论与快速学习的训练循环网络建模
基本信息
- 批准号:10456065
- 负责人:
- 金额:$ 24.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimalsAreaArtificial IntelligenceBackBase of the BrainBehavioralBiologicalBrainCategoriesCodeCognitionComputer SimulationDataDevelopmentDimensionsFrontotemporal DementiaFutureGoalsHippocampus (Brain)HumanKnowledgeLearningLesionLocationMachine LearningMeasuresMemoryMetaplasiaModelingMonkeysNeural Network SimulationNeuronsNeurosciencesPopulation DynamicsPrefrontal CortexPrimatesPrincipal Component AnalysisProcessProtocols documentationPsyche structurePsychological reinforcementRecurrenceResearchRoleSamplingSemantic memorySemanticsSensoryStimulusStructureStudy modelsSynapsesTestingThinnessTimeTrainingWeightbasebrain researchclassical conditioningcognitive taskcomputational neurosciencecomputer frameworkexperimental studyflexibilityfrontierinsightlearning algorithmnetwork modelsneural circuitneural networkneurophysiologynonhuman primaterecurrent neural networkrelating to nervous systemsupervised learningtheoriestooltwo-dimensional
项目摘要
Humans have remarkable ability to acquire a rich repertoire of concepts stored in semantic memory,
which can be deplored in “learning to lean” that facilitates rapid new learning or even one-shot learning.
Nonhuman animals are also endowed with “learning to learn”; on the other hand, there is evidence that
primates but not rodents possess this mental capability. The underlying brain mechanisms are completely
unknown and represent a widely open question at the frontier of Neuroscience today. The present
computational project, in conjecture with the experimental projects of this application, has the primary goal of
elucidating the neural circuit basis of rapid learning. Progress is this research direction will represent a major
step forward in bridging nonhuman primate and human neuroscientific understanding of higher cognition.
Our modeling approach integrates large-scale circuit modeling of primate brain based on measured
mesoscopic connectivity and training recurrent neural networks to perform cognitive tasks. Together with the
proposed experiments in this application, we will develop tools to describe and elucidate neural population
dynamics in single trials, which is crucial for neurophysiological analysis of rapid learning (even one-shot
learning) without averaging over many repetitive trials in a steady state situation. The main hypothesis is that
learning to learn depends on the formation of an abstraction of sensori-motor representations, such as that of
task structure or “schema”, which is manifested in a shift of neural representation from the hippocampus to the
prefrontal cortex; this conceptual representation enables rapid future learning by efficient changes of
connection weights within a low dimensional subspace. This hypothesis will be tested using the state space
analysis and dimensionality reduction of the recurrent neural network dynamics.
Aim 1 will to be to advance a mesoscopic connectivity-based multi-regional neural network model for
rapid learning in categorization, flexible sensori-motor mapping and object-location association. The model will
be systematically tested and validated by comparison with behavioral data from category learning and
associative learning tasks. Aim 2 will be to uncover neural population dynamics and circuit mechanism of rapid
learning in single trials, using state-space analysis and identifying a subspace of neural population dynamics
as well as a subspace of connection weights that may correspond to the formation of semantic memory. Aim 3
will be to dissect the differential roles of HPC, PFC, PPC and their dynamical interactions underlying rapid
learning, by simulating “area lesion” at different time points of a learning process. A spiking network version of
our model will enable us to uncover inter-areal dynamical interactions and their role in rapid learning.
Advances in this area would not only be important for the Neuroscience of learning and memory, but
also have potentially major implications for the future development of AI, and for shedding insights into the
brain mechanism of deficits in semantic memory, which is at the core of fronto-temporal dementia.
人类具有出色的能力,可以获取存储在语义记忆中的概念的丰富曲目,
可以将其部署在“学习倾斜”中,从而有助于快速的新学习甚至一声学习。
非人类动物也被“学习学习”。另一方面,有证据表明
灵长类动物但没有啮齿动物具有这种心理能力。潜在的大脑机制是完全
在当今神经科学的边界,未知并代表了一个广泛的公开问题。现在
计算项目在该应用程序的实验项目中的概念上,其主要目标是
阐明快速学习的神经回路基础。进度是这个研究方向将代表一个主要
向前迈进,弥合非人类灵长类动物和对更高认知的人类神经科学的理解。
我们的建模方法基于测量
介观连通性和训练复发性神经网络以执行认知任务。与
在此应用中提出的实验,我们将开发描述和阐明神经元种群的工具
单个试验中的动力学,这对于快速学习的神经生理学分析至关重要(甚至一次)
学习),而无需在稳态情况下平均许多重复试验。主要假设是
学习学习取决于传感运动表示的抽象的形成,例如
任务结构或“架构”,这表现在神经表示从海马到
前额叶皮层;这种概念表示可以通过有效的更改来快速学习
连接权重在低维子空间内。该假设将使用状态空间进行检验
复发性神经网络动力学的分析和维度降低。
目标1将是推进基于介观连接的多区域神经网络模型
类别的快速学习,灵活的感觉运动映射和对象位置关联。该模型将
通过与类别学习的行为数据进行系统测试和验证
协会学习任务。 AIM 2将是发现快速的神经种群动态和电路机制
在单个试验中学习,使用状态空间分析并识别神经种群动态的子空间
以及连接权重的子空间,可能对应于语义内存的形成。目标3
将剖析HPC,PFC,PPC及其动态相互作用的差异作用
通过在学习过程的不同时间点模拟“区域病变”来学习。尖峰网络版本的
我们的模型将使我们能够揭示美主的动态相互作用及其在快速学习中的作用。
该领域的进步不仅对学习和记忆的神经科学很重要,而且对
还可能对AI的未来发展产生重大影响,并散发出对
语义记忆中防御能力的大脑机制,这是额颞痴呆的核心。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIAO-JING WANG其他文献
XIAO-JING WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIAO-JING WANG', 18)}}的其他基金
Models of computation in multi-regional circuits with thalamus in the middle
丘脑位于中部的多区域电路的计算模型
- 批准号:
10546516 - 财政年份:2022
- 资助金额:
$ 24.65万 - 项目类别:
Models of computation in multi-regional circuits with thalamus in the middle
丘脑位于中部的多区域电路的计算模型
- 批准号:
10294405 - 财政年份:2022
- 资助金额:
$ 24.65万 - 项目类别:
CRCNS: Gradients of receptors underlying distributed cognitive functions
CRCNS:分布式认知功能的受体梯度
- 批准号:
10251904 - 财政年份:2019
- 资助金额:
$ 24.65万 - 项目类别:
CRCNS: Gradients of receptors underlying distributed cognitive functions
CRCNS:分布式认知功能的受体梯度
- 批准号:
9916911 - 财政年份:2019
- 资助金额:
$ 24.65万 - 项目类别:
Neural circuit theory and trained recurrent network modeling of rapid learning
神经回路理论与快速学习的训练循环网络建模
- 批准号:
9983227 - 财政年份:2018
- 资助金额:
$ 24.65万 - 项目类别:
2010 Neurobiology of Cognition Gordon Research Conference
2010年认知神经生物学戈登研究会议
- 批准号:
7996710 - 财政年份:2010
- 资助金额:
$ 24.65万 - 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
- 批准号:
7929323 - 财政年份:2009
- 资助金额:
$ 24.65万 - 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
- 批准号:
7686848 - 财政年份:2007
- 资助金额:
$ 24.65万 - 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
- 批准号:
7369653 - 财政年份:2007
- 资助金额:
$ 24.65万 - 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
- 批准号:
7928197 - 财政年份:2007
- 资助金额:
$ 24.65万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
BRAIN CONNECTS: Synaptic resolution whole-brain circuit mapping of molecularly defined cell types using a barcoded rabies virus
大脑连接:使用条形码狂犬病病毒对分子定义的细胞类型进行突触分辨率全脑电路图谱
- 批准号:
10672786 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
Small molecules combination therapy using polypharmacology approach as a novel treatment paradigm for rare bone disease
使用多药理学方法的小分子联合疗法作为罕见骨病的新型治疗范例
- 批准号:
10759694 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
Investigating Symbolic Computation in the Brain: Neural Mechanisms of Compositionality
研究大脑中的符号计算:组合性的神经机制
- 批准号:
10644518 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别:
Characterizing the underlying population code to understand the functional organization of the hippocampus and the lateral hypothalamus
表征潜在的群体代码以了解海马和下丘脑外侧的功能组织
- 批准号:
10828039 - 财政年份:2023
- 资助金额:
$ 24.65万 - 项目类别: