Trans-synaptic signaling complex in amygdala pain mechanisms
杏仁核疼痛机制中的跨突触信号复合体
基本信息
- 批准号:10455683
- 负责人:
- 金额:$ 53.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAffectAffectiveAmericanAmygdaloid structureAnxietyAxodendritic SynapseAxosomatic SynapseBehaviorBiochemicalBiologicalBrainCalcitonin Gene-Related PeptideClinicalComplexConfocal MicroscopyDataDendritesDevelopmentDown-RegulationDrug AddictionElectron MicroscopyElectrophysiology (science)ElementsEmotionalEquilibriumExperimental DesignsFoundationsFrequenciesFreund&aposs AdjuvantFunctional disorderGeneticGlutamate ReceptorGlutamatesHealth Care CostsHypersensitivityImageImmunoelectron MicroscopyImpaired cognitionImpairmentIncidenceInflammatoryInfusion proceduresInjectionsIon ChannelKnockout MiceKnowledgeLaboratoriesLateralLeadLigationMaintenanceMechanicsMediatingMental DepressionMessenger RNAMethodsModelingMolecularMusNeuronal PlasticityNeuronsNeuropathyNociceptionPainPain managementPathway interactionsPeripheralPersistent painPharmaceutical PreparationsPlayPrecipitationPresynaptic TerminalsProductivityProtein Kinase CReagentRecombinantsResearchResearch DesignRoleSensorySignal TransductionSliceSomatostatinSpinal nerve structureStructureSynapsesSynaptic plasticitySystemTechniquesTestingViralabuse liabilityanxiety-like behaviorbasecell typechronic paincomorbidityconfocal imagingdelta receptorsdisabilityeconomic costexperimental studygenetic approachimaging approachinflammatory painneuronal cell bodynew therapeutic targetnoveloptogeneticsoverexpressionpain behaviorpain modelpain processingpain reductionpain reliefpain signalpainful neuropathyparabrachial nucleuspostsynapticpresynapticreceptorreceptor expressionrestorationsexside effectsynaptic functionvocalization
项目摘要
Summary:
Pain is a serious clinical problem that affects more than 100 million Americans. The economic costs of pain have
been estimated to be more than several hundred billion dollars including healthcare costs and lost productivity. Persistent
pain may produce long-term disability and lead to precipitation of depression, anxiety and cognitive impairment.
Currently used medications for chronic pain are not always effective and have limitations in terms of tolerance and abuse
liability. Thus, identifying novel therapeutic targets is essential to address this clinical burden. Peripheral and central
pathways that encode, transmit, and amplify or reduce pain signals have been identified, including the spinothalamic and
spinoparabrachial pathways. Plasticity of glutamatergic synapses along key nodes in the spinoparabrachial-amygdala
pathway plays an important role in pain modulation and in the transition from subacute to chronic pain. However, the
mechanisms governing the development, maintenance and plasticity of this system and their role in persistence of pain
behaviors remain poorly understood. The proposed research will advance the concept that the trans-synaptic signaling
complex centered on glutamate delta 1 receptor regulates function of synapses in the laterocapsular region of central
amygdala also known as “nociceptive amygdala” and contributes to persistent pain mechanisms. Specific Aim1 will
define the cell type- and projection-specific distribution of these receptors and their role in regulating amygdala circuitry
and nocifensive and averse-affective behavior under normal conditions. Specific Aim 2 will determine persistent/chronic
pain-related changes in glutamate delta 1 signaling using inflammatory and neuropathic pain models and test the effect of
a rescue strategy on synaptic neuroplasticity in pain models. Changes in ultrastructure of amygdala synapses in pain
models will be evaluated using 3D-electron microscopy. Specific Aim 3 will determine the effect of restoring trans-
synaptic signaling through the glutamate delta 1 receptor in mitigating nocifensive and averse-affective behaviors in pain
models. Complementary experiments will address the effect of cell-type specific manipulation of central amygdala
circuitry in mitigating pain. To accomplish these aims we will utilize a combination of brain slice electrophysiology,
behavior, chemo- and opto-genetics, confocal and electron microscopy (immuno and 3D), and genetic approaches to
determine the functional and structural mechanisms through which the glutamate delta 1 signaling complex regulates
pain-related neuroplasticity and behaviors. This project is significant because it would identify a novel brain mechanism
of pain that could be targeted for pain management. Scientific rigor of research design is established by the use of multiple
methods and approaches, replication of experiments in independent laboratories, use of validated models and reagents,
consideration of blinding, biological variables and sex in addition to other aspects of experimental design.
概括:
疼痛是一个严重的临床问题,会影响超过1亿美国人。痛苦的经济成本有
据估计,包括医疗费用和生产力损失,估计超过数亿美元。执着的
疼痛可能会导致长期残疾,并导致抑郁症,焦虑和认知障碍的精度。
目前使用的用于慢性疼痛的药物并不总是有效的,并且在宽容和虐待方面有局限性
责任。这是确定新型热目标对于解决这一临床负担至关重要的。外围和中央
已经确定了编码,传输和放大或减少疼痛信号的途径,包括脊柱丘脑和
Spinoparabrachial途径。沿着旋转丙型果杏仁核中的关键节点的谷氨酸能突触的可塑性
途径在疼痛调节以及从亚急性到慢性疼痛的过渡中起着重要作用。但是,
控制该系统的发展,维护和可塑性及其在疼痛持续性中的作用的机制
行为仍然知之甚少。拟议的研究将推动反式突触信号传导的概念
以谷氨酸三角洲1受体为中心的复合物调节中央后期区域突触的功能
杏仁核也称为“伤害感受杏仁核”,并有助于持续的疼痛机制。特定的AIM1会
定义这些受体的细胞类型和投影特异性分布及其在调节杏仁核电路中的作用
以及在正常条件下的单位性和厌恶性行为。特定目标2将决定持久/慢性
使用炎症和神经性疼痛模型,与谷氨酸三角洲1信号传导的疼痛变化,并测试
疼痛模型中合成神经质量的救援策略。疼痛中杏仁核突触的超微结构的变化
将使用3D电子显微镜评估模型。特定的目标3将决定恢复trans-的效果
通过谷氨酸三角洲1受体的突触信号传导,缓解疼痛中的性和厌恶性行为
型号。互补实验将解决中央杏仁核特异性操纵的影响
缓解疼痛的电路。为了实现这些目标,我们将利用大脑切片电生理学的组合,
行为,化学和光基因,共聚焦和电子显微镜(免疫和3D),以及遗传方法
确定谷氨酸三角洲1信号传导复合物调节的功能和结构机制
与疼痛有关的神经塑性和行为。该项目很重要,因为它可以确定一种新型的大脑机制
可能针对疼痛管理的疼痛。研究设计的科学严谨性是通过使用多个的
方法和方法,独立实验室中实验的复制,使用经过验证的模型和试剂,
除了实验设计的其他方面外,考虑盲目,生物学变量和性别。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shashank Manohar Dravid其他文献
Shashank Manohar Dravid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shashank Manohar Dravid', 18)}}的其他基金
Structure-Function and Signaling of Glutamate Delta 1 in Pain Mechanism
疼痛机制中谷氨酸 Delta 1 的结构功能和信号传导
- 批准号:
10688445 - 财政年份:2023
- 资助金额:
$ 53.04万 - 项目类别:
Trans-synaptic signaling complex in amygdala pain mechanisms
杏仁核疼痛机制中的跨突触信号复合体
- 批准号:
10668459 - 财政年份:2020
- 资助金额:
$ 53.04万 - 项目类别:
Trans-synaptic signaling complex in amygdala pain mechanisms
杏仁核疼痛机制中的跨突触信号复合体
- 批准号:
10225641 - 财政年份:2020
- 资助金额:
$ 53.04万 - 项目类别:
Assessment of glutamate delta-1 receptor in mental disorders
精神障碍中谷氨酸 delta-1 受体的评估
- 批准号:
8512197 - 财政年份:2013
- 资助金额:
$ 53.04万 - 项目类别:
Assessment of glutamate delta-1 receptor in mental disorders
精神障碍中谷氨酸 delta-1 受体的评估
- 批准号:
8743273 - 财政年份:2013
- 资助金额:
$ 53.04万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 53.04万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 53.04万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 53.04万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 53.04万 - 项目类别: