Mechanism of hypoxia mediated failure of oligodendrocyte generation
缺氧介导少突胶质细胞生成失败的机制
基本信息
- 批准号:10453705
- 负责人:
- 金额:$ 1.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:ASCL2 geneAction PotentialsAdultAffectAnimal ModelApoptosisAxonBHLH ProteinBindingBiological AssayBrainCell Differentiation processCell MaintenanceCellsCerebrovascular systemChIP-seqChildChromatinChronicClustered Regularly Interspaced Short Palindromic RepeatsCognitive deficitsCommunicationDNA BindingDataDefectDevelopmentDiffuseDiseaseDown-RegulationE-Box ElementsEnhancersExhibitsFailureFamilyFutureGene TargetingGenerationsGenesGenetic TechniquesGenomeHypoxiaHypoxia Inducible FactorImmunohistochemistryImpaired cognitionIn VitroInfantInjuryKnock-outLesionLuciferasesMaintenanceMediatingModelingMolecular GeneticsMusMyelinNatural regenerationNeuraxisNeurodevelopmental DeficitNeurodevelopmental DisorderNeurologicNeuronsOligodendrogliaPerinatal CarePluripotent Stem CellsPopulationPremature BirthPremature InfantRecoveryResidual stateRoleSmall Interfering RNATestingTherapeutic InterventionTissuesUnited StatesUp-RegulationWestern Blottingbaseblocking factorbrain tissuecell typeexperimental studygenetic technologyin vitro Modelin vivoinsightknock-downlung developmentmotor deficitmotor disordermouse modelnew technologynormoxianoveloligodendrocyte lineageoligodendrocyte progenitoroverexpressionprematurepreventpromoterpuprestorationspatiotemporalstem cellstranscription factorwhite matterwhite matter injury
项目摘要
PROJECT SUMMARY
Nearly 1 out of every 10 children are born prematurely in the United States and although advancements in
perinatal care have resulted in the increased survival of preterm infants, many of these children go on to exhibit
neurodevelopmental deficits leading to significant cognitive and motor dysfunction. One of the most common
neurologic insults following preterm birth is diffuse white matter injury (DWMI), which is thought to arise from
hypoxic injury to the developing brain caused by the immature state of lung development and cerebral
vasculature and has no cure. White matter is required for communication within the central nervous system and
is primarily composed of myelin, which is a fatty sheath that surrounds neuronal axons to allow efficient action
potential propagation. Myelin is generated by mature oligodendrocytes, which arise via differentiation of
oligodendrocyte progenitor cells (OPCs). In the context of DWMI, hypoxia leads to apoptosis of cells of the
oligodendrocyte lineage followed by proliferation and failure of subsequent oligodendrocyte regeneration from
residual OPCs. This deficit in oligodendrocyte generation from OPCs following hypoxia can be abrogated by
knocking out hypoxia inducible factors (HIFs), which are DNA-binding transcription factors that accumulate under
hypoxia and are rapidly degraded in normoxia, in OPCs. However, the mechanism of how HIFs block
oligodendrocyte generation remains elusive. Leveraging our lab’s ability to generate large and pure populations
of OPCs, I performed ChIP-seq for HIF1a and H3K27Ac, a marker of active chromatin, in order to determine
putative HIF targets across the OPC genome. The top candidate target based on HIF1a binding as well as
enrichment of H3K27Ac suggested a transcription factor that has been shown to be important for stem cell
maintenance in tissues outside the central nervous system as a target of HIF in OPCs. I demonstrate that
overexpression of this transcription factor is sufficient to inhibit differentiation of OPCs to oligodendrocytes and
is upregulated following hypoxic injury in a mouse model of DWMI. This proposal seeks to further investigate
these findings by 1) utilizing a combination of cellular, molecular and genetic techniques to determine the
mechanism by which this transcription factor inhibits OPC differentiation 2) determining whether downregulation
of this transcription factor will facilitate recovery of oligodendrocyte formation following hypoxic injury in vitro and
3) characterizing the spatiotemporal dynamics of the upregulation of this transcription factor in vivo using a
mouse model of DWMI. The experiments outlined in this proposal will increase our understanding of mechanisms
that impede oligodendrocyte generation from OPCs under hypoxic conditions, and will uncover novel avenues
for therapeutic intervention for this highly prevalent and debilitating neurodevelopmental condition.
项目概要
在美国,近十分之一的儿童早产,尽管在这方面取得了进步
围产期护理提高了早产儿的存活率,其中许多儿童继续表现出
神经发育缺陷导致严重的认知和运动功能障碍。
早产后的神经损伤是弥漫性白质损伤(DWMI),被认为是由
肺和脑发育不成熟导致发育中的大脑缺氧损伤
脉管系统并且无法治愈。白质是中枢神经系统内沟通所必需的。
主要由髓磷脂组成,髓磷脂是围绕神经元轴突的脂肪鞘,可实现有效的作用
髓鞘质由成熟的少突胶质细胞产生,通过分化产生。
在 DWMI 的情况下,缺氧会导致少突胶质细胞祖细胞 (OPC) 细胞凋亡。
少突胶质细胞谱系随后增殖并随后少突胶质细胞再生失败
缺氧后 OPC 生成少突胶质细胞的这种缺陷可以通过以下方法消除:
敲除缺氧诱导因子 (HIF),这是在缺氧条件下积累的 DNA 结合转录因子
OPCs 在缺氧条件下会迅速降解,但 HIF 的阻断机制尚不清楚。
少突胶质细胞的产生仍然难以捉摸,利用我们实验室产生大量纯群体的能力。
OPCs,我对 HIF1a 和 H3K27Ac(活性染色质标记)进行了 ChIP-seq,以确定
跨 OPC 基因组的假定 HIF 靶点 基于 HIF1a 结合以及的最佳候选靶点。
H3K27Ac 的富集表明转录因子已被证明对干细胞很重要
我证明,作为 OPC 中 HIF 的靶标,可以维持中枢神经系统以外的组织。
该转录因子的过度表达足以抑制 OPC 向少突胶质细胞的分化
在 DWMI 小鼠模型中缺氧损伤后表达上调 该提案旨在进一步研究。
这些发现通过 1) 利用细胞、分子和遗传技术的组合来确定
该转录因子抑制 OPC 分化的机制 2) 确定是否下调
该转录因子的作用将促进体外缺氧损伤后少突胶质细胞形成的恢复
3)使用体内转录因子上调的时空动态特征
本提案中概述的实验将增加我们对 DWMI 机制的理解。
阻碍低氧条件下 OPC 产生少突胶质细胞,并将揭示新的途径
对这种高度普遍且使人衰弱的神经发育状况进行治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Cameron Allan其他文献
Kevin Cameron Allan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Cameron Allan', 18)}}的其他基金
Mechanism of hypoxia mediated failure of oligodendrocyte generation
缺氧介导少突胶质细胞生成失败的机制
- 批准号:
10207702 - 财政年份:2019
- 资助金额:
$ 1.29万 - 项目类别:
Mechanism of hypoxia mediated failure of oligodendrocyte generation
缺氧介导少突胶质细胞生成失败的机制
- 批准号:
9760799 - 财政年份:2019
- 资助金额:
$ 1.29万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the functional heterogeneity of the mouse paralaminar nucleus
表征小鼠板旁核的功能异质性
- 批准号:
10678525 - 财政年份:2023
- 资助金额:
$ 1.29万 - 项目类别:
Illuminating the function regulome of cardiac L-type Ca2+ channels in health and disease
阐明心脏 L 型 Ca2 通道在健康和疾病中的功能调节组
- 批准号:
10628916 - 财政年份:2023
- 资助金额:
$ 1.29万 - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 1.29万 - 项目类别:
Diversification of the mechanotransduction complex in vestibular hair cells
前庭毛细胞中机械转导复合体的多样化
- 批准号:
10734358 - 财政年份:2023
- 资助金额:
$ 1.29万 - 项目类别:
The Effects of Aging and Microglia Dysfunction on Remyelination
衰老和小胶质细胞功能障碍对髓鞘再生的影响
- 批准号:
10603320 - 财政年份:2023
- 资助金额:
$ 1.29万 - 项目类别: