Mechanism and Consequences of Temporal Gene Expression for SOS-induced Mutagenesis
SOS 诱导突变的时间基因表达的机制和后果
基本信息
- 批准号:10453969
- 负责人:
- 金额:$ 4.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAllelesAntibiotic ResistanceAntibioticsAreaBacteriaBacterial DNABehaviorBenefits and RisksBinding SitesBiochemicalBiochemistryCommunitiesDNA DamageDNA Repair GeneDataDoseEngineeringEnzymesEquilibriumEventEvolutionExposure toFaceGene ExpressionGenesGeneticHeritabilityHomeostasisIndividualLinkMeasuresMentorsMutagenesisMutationOther GeneticsPathway interactionsPennsylvaniaPositioning AttributeProcessPublic HealthRegulationResearchResearch PersonnelResistanceRouteSOS ResponseSeriesSiteSon of Sevenless ProteinsSourceStimulusStressStructureSynthetic GenesSystemTechniquesTestingTranscription RepressorUniversitiesVariantbacterial geneticsbiological adaptation to stresscareer developmentcombatdesigndrug discoveryfallsfitnessgenome sequencinggenotoxicityinnovationnew therapeutic targetnovel drug classnovel strategiesoperationpreventpromoterrepairedresistance mechanismresistance mutationresponsesynthetic biologywhole genome
项目摘要
Project Summary/Abstract
We face a public health crisis due to antibiotic resistance, making it imperative to understand how bacteria
adapt to antibiotics. The bacterial DNA damage response (SOS response), is a genetic circuit that coordinates
the expression of genes linked to the acquisition of resistance. Our data point to a circuit mechanism which
enables an extreme separation of error-free and error-prone repair activities at high doses of DNA damage.
We believe understanding this mechanism is important, as it may promote the acquisition of antibiotic
resistance and thus reveal a novel target for therapy. In this proposal we explore the mechanisms and
consequences of temporal gene expression for SOS-induced mutagenesis through the following specific aims:
Aim 1. What factors dictate the extent and timing of promoter activity for SOS genes? LexA affinity, SOS
gene promoter structure, and the type of DNA damage may all influence the extent and timing of promoter
activity within the SOS gene network. We propose to pair biochemistry with a synthetic biology approach to
understand how each of these individual factors independently impacts timing in the circuit in order to elucidate
the underlying mechanisms responsible for temporal control of promoter activity.
Aim 2. What is the mechanism of dose-dependent timing of promoter activities? The lexA promoter,
itself, contains binding sites for LexA, placing the SOS-circuit under negative autoregulation. Our data suggest
that functional disruption of autoregulation at high doses of DNA damage is critical to achieve the extreme
timing differences we observe. We propose to engineer bacterial strains with altered autoregulation of the SOS
response to understand how timing of gene expression is achieved.
Aim 3. Is the temporal ordering of SOS promoter activities functionally important? Enzymes involved in
error-free repair and those involved in error-prone repair may compete for the same damaged DNA substrates.
Appropriate timing of these activities may be critical to promote resistance. To test this idea we will engineer
bacterial strains with altered timing of these two activities and assess for effects on survival, fitness, and
mutational phenomena when exposed to genotoxic antibiotic stress.
These studies will uncover new mechanisms for how bacteria adapt to stress and control the timing of gene
expression. The information will predict the behavior of other genetic circuits and will inform new approaches in
antibiotic drug discovery that aim to suppress mutagenesis in order to prevent the acquisition of antibiotic
resistance mutations. It will also extend the PI, who is well versed in biochemical studies, into new areas
involving synthetic biology, bacterial genetics, and whole genome sequencing. The combination of a dedicated
mentoring team, rigorous plans for career development, and opportunities for integration into a vibrant
research community at the University of Pennsylvania will position the PI to become a leading independent
researcher dedicated to addressing the problem of antibiotic resistance.
项目摘要/摘要
由于抗生素抗性,我们面临公共卫生危机,因此必须了解细菌如何
适应抗生素。细菌DNA损伤反应(SOS响应)是一种统计的遗传回路
基因的表达与抗药性的获取有关。我们的数据指向电路机构
在高剂量的DNA损伤下,实现无错误和容易出错的修复活动的极端分离。
我们认为理解这种机制很重要,因为它可能会促进抗生素的获取
抗性,因此揭示了一种新的治疗靶标。在此提案中,我们探讨了机制和
时间基因表达对SOS诱导的诱变的后果通过以下特定目的:
目标1。哪些因素决定了SOS基因的启动子活性的程度和时机? Lexa Affinity,SOS
基因启动子结构和DNA损伤的类型都可能影响启动子的程度和时机
SOS基因网络中的活动。我们建议将生物化学与合成生物学方法配对
了解这些个人因素中的每个因素如何独立影响电路中的时机以阐明
负责启动子活动时间控制的基本机制。
目标2。启动子活动的剂量依赖时间的机制是什么? Lexa启动子,
本身,包含Lexa的结合位点,将SOS-CIRCUIT放置在负自动调节下。我们的数据暗示
高剂量DNA损伤时自动调节的功能破坏对于达到极端是至关重要的
我们观察到的时间差异。我们建议通过改变SOS的自动调节来设计细菌菌株
回应了解如何实现基因表达的时间。
目标3。SOS启动子活动的时间顺序在功能上是否重要?涉及的酶
无错误维修和参与易于错误的修复的人可能会竞争相同的受损DNA底物。
这些活动的适当时机对于促进抵抗可能至关重要。为了测试这个想法,我们将设计
细菌菌株随着这两种活动的时间改变的改变,并评估对生存,健身和
突变现象暴露于遗传毒性抗生素应激时。
这些研究将发现细菌如何适应压力和控制基因时机的新机制
表达。该信息将预测其他遗传回路的行为,并将其告知新方法
旨在抑制诱变的抗生素药物发现,以防止获得抗生素
抗性突变。它还将将精通生化研究精通的PI扩展到新领域
涉及合成生物学,细菌遗传学和整个基因组测序。专用的结合
指导团队,严格的职业发展计划以及整合到充满活力的机会
宾夕法尼亚大学的研究社区将把PI定位为领先的独立
研究人员致力于解决抗生素耐药性问题。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Parameter-Fitness Landscape of lexA Autoregulation in Escherichia coli.
- DOI:10.1128/msphere.00718-20
- 发表时间:2020-08-19
- 期刊:
- 影响因子:4.8
- 作者:Kozuch, Beverley C;Shaffer, Marla G;Culyba, Matthew J
- 通讯作者:Culyba, Matthew J
Effect of mismatch repair on the mutational footprint of the bacterial SOS mutator activity.
- DOI:10.1016/j.dnarep.2021.103130
- 发表时间:2021-07
- 期刊:
- 影响因子:3.8
- 作者:Lewis EB;Mudipalli R;Eghbal MM;Culyba MJ
- 通讯作者:Culyba MJ
Ordering up gene expression by slowing down transcription factor binding kinetics.
- DOI:10.1007/s00294-018-0896-7
- 发表时间:2019-04
- 期刊:
- 影响因子:2.5
- 作者:Culyba MJ
- 通讯作者:Culyba MJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATTHEW J CULYBA其他文献
MATTHEW J CULYBA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATTHEW J CULYBA', 18)}}的其他基金
Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
- 批准号:
10352493 - 财政年份:2022
- 资助金额:
$ 4.19万 - 项目类别:
Determining the mechanisms that cause persistent MRSA bloodstream infection by tracking in-host evolution
通过追踪宿主进化来确定导致持续性 MRSA 血流感染的机制
- 批准号:
10613457 - 财政年份:2022
- 资助金额:
$ 4.19万 - 项目类别:
Mechanism and Consequences of Temporal Gene Expression for SOS-induced Mutagenesis
SOS 诱导突变的时间基因表达的机制和后果
- 批准号:
9384879 - 财政年份:2017
- 资助金额:
$ 4.19万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Activity-Dependent Regulation of CaMKII and Synaptic Plasticity
CaMKII 和突触可塑性的活动依赖性调节
- 批准号:
10817516 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Develop new bioinformatics infrastructures and computational tools for epitranscriptomics data
为表观转录组数据开发新的生物信息学基础设施和计算工具
- 批准号:
10633591 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Gene-edited liver organoids for predictive hepatotoxicity
用于预测肝毒性的基因编辑肝脏类器官
- 批准号:
10758179 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
Dopaminergic mechanisms of resilience to Alzheimer's disease neuropathology
阿尔茨海默病神经病理学恢复的多巴胺能机制
- 批准号:
10809199 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别:
TNFRSF13B polymorphisms and immunity to transplantation
TNFRSF13B 多态性与移植免疫
- 批准号:
10734879 - 财政年份:2023
- 资助金额:
$ 4.19万 - 项目类别: