Control of PGC1alpha Translation and Function
PGC1alpha 翻译和功能的控制
基本信息
- 批准号:10341051
- 负责人:
- 金额:$ 58.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-07-04
- 项目状态:已结题
- 来源:
- 关键词:5&apos Untranslated RegionsAddressAdipose tissueAffectAffinityAffinity ChromatographyAgingAmino AcidsAnimalsAtrophicBindingBiogenesisBiological AssayBiologyBrainCRISPR/Cas technologyCell ExtractsCell RespirationCellsCodon NucleotidesCultured CellsDataDefectDiabetes MellitusDiseaseElementsEnergy MetabolismExerciseExercise ToleranceFastingFatty acid glycerol estersGene ExpressionGenetic ModelsGenetic TranslationGluconeogenesisGlucose IntoleranceHormonesHumanIGF1 geneIn VitroInitiator CodonInsulinKRP proteinLinkLiverLiver MitochondriaMass Spectrum AnalysisMeasuresMessenger RNAMetabolic DiseasesMetabolismMethodsMitochondriaModelingMolecularMusMuscleMutationNerve DegenerationNeuromuscular DiseasesNon-Insulin-Dependent Diabetes MellitusNuclearObesityOligonucleotidesOpen Reading FramesParkinson DiseasePathogenesisPeptidesPhosphoproteinsPhysiologyPlasmidsPlayPost-Transcriptional RegulationPost-Translational Protein ProcessingProcessProtein IsoformsProteinsProto-Oncogene Proteins c-aktRegulationReportingResistanceRibosomesSeriesSet proteinSignal TransductionSkeletal MuscleSpecificitySystemTherapeuticThermogenesisTissuesTranscription CoactivatorTransfectionTranslationsUntranslated RegionsWorkexperimental studygenetic manipulationhuman diseaseimprovedin vivomouse modelnew therapeutic targetnovelnovel therapeuticsphosphoproteomicspreventprogramsresponsetranscription factortranslational impact
项目摘要
a. Abstract
The transcriptional coactivator PGC1α was discovered by my group in 1998. It functions as a dominant
regulator of mitochondrial biogenesis and oxidative metabolism by coactivating several nuclear transcription
factors that control the broad program of mitochondrial gene expression. PGC1α also has important tissue
specific functions, including control of adipose thermogenesis, the fasting response in liver, and mitochondrial
biology and resistance to atrophy in skeletal muscle. Mechanisms that activate thermogenesis in fat and
prevent atrophy in muscle are of enormous importance in human metabolic diseases such as diabetes and
obesity. Preliminary data illustrates a very robust and novel translational control of PGC1α mRNA in cultured
cells and in vivo; this mRNA translation is regulated by insulin and IGF1 signaling through AKT and
mTORC signaling. Moreover, it is negatively regulated by the presence of a very small open-reading
frame (uORF) just upstream of the codon that begins translation of the canonical PGC1α1 (the
canonical PGC1α isoform; hereafter just called PGC1α) mRNA. Loss of this uORF by deletion or mutation
increases the translation of PGC1α mRNA while ablating the insulin/IGF1 effect. This uORF encodes a
predicted peptide of 15 amino acids that is strongly conserved in all mammalian species. We will begin these
studies by using several mouse models using CRISPR technology (now created) which increase or decrease
expression of this uORF by altering the start codon of this small encoded peptide (Aim 1). Mice will be
analyzed for effects on key aspects of animal metabolism and physiology (Aim 2). These will include energy
expenditure and resistance to obesity-linked glucose intolerance via thermogenic fat, gluconeogenesis in liver
and exercise tolerance in muscle. Since skeletal muscle and its atrophy is a critical component of aging and an
important target of insulin action, we will examine atrophy in the muscle-selective models. Mechanisms by
which the 5' UTR and uORF control translation of PGC1α mRNA will be examined in cells by determining if the
uORF functions in cis or trans via 2 plasmid experiments and through use of molecular “toeprint” and “footprint”
assays (Aim 3). The presence of the uORF peptide in cell extracts will be determined by Mass Spectrometry
with the use of synthetic “heavy” peptides as key internal standards. Moreover, we will set up an in vitro
translation system and determine if this regulation can be recapitulated in vitro. Key regulatory components of
this system will be isolated by established affinity chromatography methods using oligonucleotides. Finally,
Aim 4 will address the critical question of how insulin/IGF1 signaling impacts this translational control through
quantitative phosphoprotein Mass Spectrometry in insulin treated cells. Phospho-proteomic analyses will also
be applied to components isolated through the affinity methods described above. Together, these data will
provide crucial perspectives and potential new therapeutic targets through which mitochondrial
biology, physiology and disease processes might be manipulated in in vivo settings.
摘要
转录共激活因子 PGC1α 是我的团队于 1998 年发现的。它的功能是作为显性基因
通过共激活多个核转录来调节线粒体生物合成和氧化代谢
控制线粒体基因表达的广泛程序的因素也具有重要的组织作用。
特定功能,包括控制脂肪产热、肝脏的禁食反应和线粒体
激活脂肪和骨骼肌产热的生物学和抗萎缩机制。
防止肌肉萎缩对于糖尿病等人类代谢疾病非常重要
初步数据表明,培养的 PGC1α mRNA 具有非常强大且新颖的翻译控制。
细胞和体内;该 mRNA 翻译通过 AKT 受胰岛素和 IGF1 信号调节
此外,mTORC 信号传导受到非常小的开放阅读的存在的负调节。
框架 (uORF) 位于开始翻译规范 PGC1α1 的密码子上游(
典型的 PGC1α 同种型;以下简称 PGC1α) mRNA 由于缺失或突变而丢失。
增加 PGC1α mRNA 的翻译,同时消除胰岛素/IGF1 效应。该 uORF 编码 a。
预测的 15 个氨基酸肽在所有哺乳动物物种中都高度保守 我们将从这些开始。
通过使用几种使用 CRISPR 技术(现已创建)的小鼠模型进行研究,这些模型会增加或减少
通过改变这个小编码肽的起始密码子来表达这个uORF(目标1)。
分析对动物新陈代谢和生理学关键方面的影响(目标 2)。
通过产热脂肪、肝脏糖异生来消耗和抵抗肥胖相关的葡萄糖不耐受
和肌肉的运动耐量,因为骨骼肌及其萎缩是衰老的一个重要组成部分,也是一个重要的因素。
胰岛素作用的重要目标,我们将通过肌肉选择性机制研究萎缩。
5' UTR 和 uORF 控制 PGC1α mRNA 的翻译,通过确定是否
uORF 通过 2 个质粒实验并通过使用分子“脚趾印”和“足迹”以顺式或反式发挥作用
分析(目标 3)将通过质谱法测定细胞提取物中 uORF 肽的存在。
使用合成的“重”肽作为关键的内标此外,我们将建立一个体外标准。
翻译系统并确定该调节是否可以在体外重现。
最后,将使用寡核苷酸通过已建立的亲和层析方法分离该系统。
目标 4 将解决胰岛素/IGF1 信号传导如何影响这种翻译控制的关键问题
胰岛素处理细胞中的磷蛋白质谱分析也将进行。
这些数据将应用于通过上述亲和方法分离的成分。
提供重要的观点和潜在的新治疗靶点,通过线粒体
生物学、生理学和疾病过程可能在体内环境中被操纵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE M. SPIEGELMAN其他文献
BRUCE M. SPIEGELMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE M. SPIEGELMAN', 18)}}的其他基金
Cellular and Biochemical Pathways of Adipose Metabolism and Thermogenesis
脂肪代谢和产热的细胞和生化途径
- 批准号:
10304182 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Control of PGC1alpha Translation and Function
PGC1alpha 翻译和功能的控制
- 批准号:
10087918 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
PGC1alpha Pathway: Novel Intracellular and Extracellular Mediators
PGC1alpha 通路:新型细胞内和细胞外介质
- 批准号:
10732540 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Cellular and Biochemical Pathways of Adipose Metabolism and Thermogenesis
脂肪代谢和产热的细胞和生化途径
- 批准号:
10540420 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Identification of Novel Protein Kinases Dependent on Phosphocreatine Rather than ATP
依赖于磷酸肌酸而不是 ATP 的新型蛋白激酶的鉴定
- 批准号:
10227178 - 财政年份:2018
- 资助金额:
$ 58.22万 - 项目类别:
Identification of Novel Protein Kinases Dependent on Phosphocreatine Rather than ATP
依赖于磷酸肌酸而不是 ATP 的新型蛋白激酶的鉴定
- 批准号:
9979867 - 财政年份:2018
- 资助金额:
$ 58.22万 - 项目类别:
Identification of Novel Protein Kinases Dependent on Phosphocreatine Rather than ATP
依赖于磷酸肌酸而不是 ATP 的新型蛋白激酶的鉴定
- 批准号:
10457348 - 财政年份:2018
- 资助金额:
$ 58.22万 - 项目类别:
Regulation of Brown Fat: Toward New Therapy for Human Obesity
棕色脂肪的调节:人类肥胖的新疗法
- 批准号:
8045934 - 财政年份:2010
- 资助金额:
$ 58.22万 - 项目类别:
PGC-1 and Nuclear Receptors in Adaptive Thermogenesis
PGC-1 和核受体在适应性产热中的作用
- 批准号:
7998078 - 财政年份:2009
- 资助金额:
$ 58.22万 - 项目类别:
PGC-1a and the Energetics of Heart Function and Disease
PGC-1a 与心脏功能和疾病的能量学
- 批准号:
7258256 - 财政年份:2007
- 资助金额:
$ 58.22万 - 项目类别:
相似海外基金
Emerging mechanisms of viral gene regulation from battles between host and SARS-CoV-2
宿主与 SARS-CoV-2 之间的战斗中病毒基因调控的新机制
- 批准号:
10725416 - 财政年份:2023
- 资助金额:
$ 58.22万 - 项目类别:
Targeting HNF4-induced thrombo-inflammation in Chagas disease
针对恰加斯病中 HNF4 诱导的血栓炎症
- 批准号:
10727268 - 财政年份:2023
- 资助金额:
$ 58.22万 - 项目类别:
Optimization of CRISPR genome editor and its delivery strategy for C9orf72 frontotemporal dementia
C9orf72额颞叶痴呆的CRISPR基因组编辑器优化及其递送策略
- 批准号:
10746565 - 财政年份:2023
- 资助金额:
$ 58.22万 - 项目类别: