Biochemistry of SAMHD1-mediated innate immunity responses
SAMHD1 介导的先天免疫反应的生物化学
基本信息
- 批准号:10445349
- 负责人:
- 金额:$ 46.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAffinityAllosteric RegulationAllosteric SiteAnti-Retroviral AgentsAutoimmune DiseasesBackBacterial DNABindingBinding SitesBiochemicalBiochemistryBiologicalBiological ModelsBiophysicsCellsCollaborationsCysteineDNA RepairDataDefectDefense MechanismsEnzymesEvolutionFamilyGenomeGoalsGuanine NucleotidesGuanosine TriphosphateHIVHIV InfectionsHIV-1HIV-2HydrolaseHydrolysisImmuneImmune responseImmunologic FactorsInfectionInnate Immune ResponseInterferonsInterventionLaboratoriesLigandsLightLinkMediatingMessenger RNAMetabolismMolecularMutationMyelogenousMyeloid CellsNatural ImmunityNucleic Acid BindingNucleic AcidsNucleosidesNucleotidesOligonucleotidesOxidation-ReductionPathogenesisPathway interactionsPatternPlayPost-Transcriptional RegulationPost-Translational RegulationPredispositionPreventionPropertyProteinsReactive Oxygen SpeciesRegulationResistanceRestReverse TranscriptionRoleSIVSamplingSecond Messenger SystemsShapesSignal PathwaySignal TransductionSourceStructureT-LymphocyteViralViral ProteinsViral reservoirVirusVirus DiseasesVirus LatencyVirus ReplicationWorkantiviral immunitycell growth regulationimmune functioninnate immune pathwaysinnate immune sensinginsightmembernovelpathogenic virusphosphorothioateprotein functionpseudotoxoplasmosis syndromeresponsetooltreatment strategytripolyphosphate
项目摘要
ABSTRACT
SAMHD1, a mammalian member of the HD-domain hydrolase family of enzymes, catalyzes hydrolysis of
deoxynucleotides triphosphates (dNTPs) to triphosphate and unphosphorylated nucleosides, which is thought
to be the main pathway for controlled depletion of cellular dNTPs. Discoveries that SAMHD1 is an immune
factor that restricts retroviral replication in non-cycling immune cells and regulates interferon signaling revealed
that dNTP depletion may act as a defense mechanism of innate antiviral immunity. Existence of such
mechanism implies that the enzymatic activity of SAMHD1 must be controlled by pathways of innate immune
sensing and response, and that cellular regulation of SAMHD1 is key to understanding the functional
relationship between antiviral immunity and dNTP metabolism. In the studies described here we will use
unique experimental tools developed by my laboratory to elucidate how biochemical regulation of SAMHD1
determines its immune function. This project will explore two novel regulatory mechanisms that have emerged
from our preliminary work and establish their contribution to the SAMHD1-mediated anti-retroviral state in non-
cycling immune cells. The studies will shed light on how and possibly why different molecular clues and cellular
signaling pathways alter susceptibility of myeloid and resting T cells to HIV infection, and thus elucidate the
biological significance of SAMHD1 function at the interface of dNTP metabolism and antiviral defense. In a
continued collaboration with the laboratory of Dr. Diaz-Griffero we will pursue two major specific aims. In Aim 1
we will explore the role of nucleic acid binding in the immune function of SAMHD1, elucidate structural and
biochemical determinants of high-affinity interaction of SAMHD1 with oligonucleotides and determine what
nucleic acid species regulate SAMHD1 activity and why. Our preliminary data suggest that phosphorothioate
linkages in nucleic acids may act as a danger-associated molecular pattern or a second messenger in antiviral
immunity. In Aim 2 we will elucidate the mechanism linking redox transformations of SAMHD1 to the enzymatic
activity and the immune function of the protein. Our preliminary studies suggest that redox regulation of
SAMHD1 may offer insight into the emerging role of reactive oxygen species (ROS) in modulating innate
antiviral immunity. We will determine what redox states are sampled by the redox-active cysteines of SAMHD1,
how these transformations alter the biochemical properties of the protein and explore whether SAMHD1
activity is controlled by specific sources of ROS and signaling pathways in the cell.
抽象的
SAMHD1 是 HD 结构域水解酶家族的哺乳动物成员,催化水解
脱氧核苷酸三磷酸(dNTP)转化为三磷酸和非磷酸化核苷,这被认为
是控制细胞 dNTP 消耗的主要途径。发现 SAMHD1 具有免疫功能
限制逆转录病毒在非循环免疫细胞中复制并调节干扰素信号传导的因素揭示
dNTP 耗尽可能作为先天抗病毒免疫的防御机制。存在这样的
机制表明 SAMHD1 的酶活性必须受到先天免疫途径的控制
SAMHD1 的细胞调控是理解功能的关键
抗病毒免疫与 dNTP 代谢之间的关系。在这里描述的研究中,我们将使用
我的实验室开发了独特的实验工具来阐明 SAMHD1 的生化调节
决定了其免疫功能。该项目将探索已经出现的两种新颖的监管机制
根据我们的初步工作,确定它们对 SAMHD1 介导的非逆转录病毒状态的贡献
循环免疫细胞。这些研究将揭示不同的分子线索和细胞如何以及可能为何
信号通路改变骨髓和静息 T 细胞对 HIV 感染的易感性,从而阐明
SAMHD1 在 dNTP 代谢和抗病毒防御界面功能的生物学意义。在一个
继续与 Diaz-Griffero 博士实验室合作,我们将追求两个主要的具体目标。目标 1
我们将探索核酸结合在 SAMHD1 免疫功能中的作用,阐明结构和
SAMHD1 与寡核苷酸高亲和力相互作用的生化决定因素,并确定什么
核酸种类调节 SAMHD1 活性及其原因。我们的初步数据表明硫代磷酸酯
核酸中的连接可能充当危险相关的分子模式或抗病毒药物中的第二信使
免疫。在目标 2 中,我们将阐明将 SAMHD1 的氧化还原转化与酶促反应联系起来的机制。
蛋白质的活性和免疫功能。我们的初步研究表明氧化还原调节
SAMHD1 可能有助于深入了解活性氧 (ROS) 在调节先天性中的新兴作用
抗病毒免疫力。我们将确定 SAMHD1 的氧化还原活性半胱氨酸采样哪些氧化还原态,
这些转变如何改变蛋白质的生化特性并探索 SAMHD1 是否
活性由细胞中特定的 ROS 来源和信号通路控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DMITRI N IVANOV其他文献
DMITRI N IVANOV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DMITRI N IVANOV', 18)}}的其他基金
Biochemistry of SAMHD1-mediated innate immunity responses
SAMHD1 介导的先天免疫反应的生物化学
- 批准号:
10212922 - 财政年份:2019
- 资助金额:
$ 46.78万 - 项目类别:
Retroviral capsid recognition by TRIM5alpha restriction factors
TRIM5alpha 限制因子识别逆转录病毒衣壳
- 批准号:
9262531 - 财政年份:2014
- 资助金额:
$ 46.78万 - 项目类别:
Retroviral capsid recognition by TRIM5alpha restriction factors
TRIM5alpha 限制因子识别逆转录病毒衣壳
- 批准号:
8732420 - 财政年份:2014
- 资助金额:
$ 46.78万 - 项目类别:
Structural Basis of Retroviral Restriction by TRIM5alpha
TRIM5alpha 限制逆转录病毒的结构基础
- 批准号:
7898613 - 财政年份:2009
- 资助金额:
$ 46.78万 - 项目类别:
Structural Basis of Retroviral Restriction by TRIM5alpha
TRIM5alpha 限制逆转录病毒的结构基础
- 批准号:
7755507 - 财政年份:2009
- 资助金额:
$ 46.78万 - 项目类别:
Structural Basis of Retroviral Restriction by TRIM5alpha
TRIM5alpha 限制逆转录病毒的结构基础
- 批准号:
8055204 - 财政年份:2009
- 资助金额:
$ 46.78万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Structure and function of mitochondrial Hsp60
线粒体 Hsp60 的结构和功能
- 批准号:
10406155 - 财政年份:2021
- 资助金额:
$ 46.78万 - 项目类别:
Structure and function of mitochondrial Hsp60
线粒体 Hsp60 的结构和功能
- 批准号:
10631061 - 财政年份:2021
- 资助金额:
$ 46.78万 - 项目类别:
Molecular Mechanism of Mitochondrial Membrane Transport
线粒体膜运输的分子机制
- 批准号:
10034915 - 财政年份:2020
- 资助金额:
$ 46.78万 - 项目类别:
Molecular Mechanism of Mitochondrial Membrane Transport
线粒体膜运输的分子机制
- 批准号:
10396663 - 财政年份:2020
- 资助金额:
$ 46.78万 - 项目类别:
Molecular Mechanism of Mitochondrial Membrane Transport
线粒体膜运输的分子机制
- 批准号:
10187602 - 财政年份:2020
- 资助金额:
$ 46.78万 - 项目类别: