Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
基本信息
- 批准号:8822295
- 负责人:
- 金额:$ 37.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAffectAlgorithmsAlzheimer&aposs DiseaseAppetitive BehaviorAreaAttentionAuditory areaBananaBehaviorBehavioralBicyclingBrainColorComplexComputer Vision SystemsDataDevelopmentDiagnosisDimensionsDiseaseElementsEnvironmentEventEye MovementsFinancial compensationGoalsGray unit of radiation doseHumanImageIndividualLocationMacaca mulattaMapsMeasuresModelingMonkeysNervous system structureNeuronsParkinson DiseasePatientsPatternPositioning AttributePrimatesPropertyResearchRestRetinaRoleSaccadesSchizophreniaShapesStimulusStrokeSystemTestingTimeTreesVisualVisual AcuityVisual CortexVisual system structureWeightWorkautism spectrum disorderawakebasebehavioral studydriving behaviorexpectationfrontal eye fieldsimage guidedinterestmathematical analysismathematical modelmind controlneuromechanismresearch studysample fixationvisual motorvisual stimulus
项目摘要
The overall goal of these experiments is to understand how the brain controls where we look. To accomplish
this, it is important to study brain activity and behavior under conditions that closely approximate those in the
real world. All of the experiments we propose to do will use awake behaving rhesus monkeys as subjects. In
prior work, we have studied activity in the cortical frontal eye field while monkeys looked at images of natural
scenes. The frontal eye field (FEF) is closely involved in the control of purposive voluntary eye movements.
While the monkey searched for a target hidden in the images of natural scenes, the activity of FEF neurons
consisted of combinations of activity related to planning upcoming eye movements, as well as activity that was
sensitive to salient visual features of the image. In parallel with the development of our understanding of how
the brain controls eye movements, there have been substantial advances in our understanding of the features
of natural images that guide both human and monkey eye movements. These behavioral studies are at the
advanced level of being able to accurately predict patterns of eye movements. Our goal in this proposal is to
take advantage of these advancements in predicting patterns of eye movements in natural environments to
help us understand the brain events that are responsible for this behavior. We will focus upon neuron activity in
the FEF due to its essential role in the control of voluntary eye movements. The proposal has 3 Aims each
focused upon a different factor that is known to guide eye movements under natural conditions. Salience
describes how different a small part of a visual scene is from the remainder of the scene based upon stimulus
features such as color, contrast, shape, and orientation. Our first aim will define the effects that salience has
upon FEF activity. In our second aim, we'll quantify the effects of relevance. Relevance refers to the
importance of visual features for the task at hand; for example, if we're looking for a red target, the red items in
the image will be more likely to attract our attention and ultimately be the target for an eye movement. Knowing
the broad composition of a scene, a quality that is called scene gist, can tell us the places where an object is
more likely to be found. For example, if we are looking for a bicycle, we are more likely to search the sidewalks
and roadways of a street scene and ignore other places where bicycles are unlikely to be found. Our final aim
will look for the effects of scene gist upon monkey behavior and the FEF activity driving that behavior. In
addition to the brain recording experiments outlined above, a large part of our effort will be devoted to
mathematical analysis and modeling of the behavioral and neuronal data we obtain. Our ultimate goal is to
provide a model that predicts the contributions of salience, relevance, and gist to the activity of FEF neurons.
The successful model will be a mathematical representation that predicts search-related activity in the FEF for
both artificial and real world conditions.
这些实验的总体目标是了解大脑如何控制我们的视线。为了完成
因此,研究在非常接近的条件下的大脑活动和行为非常重要。
现实世界。我们计划进行的所有实验都将使用清醒行为的恒河猴作为受试者。在
在之前的工作中,我们研究了猴子观看自然图像时大脑额叶皮层的活动
场景。额叶视野(FEF)与有目的随意眼球运动的控制密切相关。
当猴子寻找隐藏在自然场景图像中的目标时,FEF 神经元的活动
包括与计划即将到来的眼球运动相关的活动的组合,以及
对图像的显着视觉特征敏感。随着我们对如何进行理解的发展,
大脑控制眼球运动,我们对这些特征的理解已经取得了实质性进展
引导人类和猴子眼球运动的自然图像。这些行为研究是在
能够准确预测眼球运动模式的高级水平。我们在本提案中的目标是
利用这些进步来预测自然环境中的眼球运动模式
帮助我们了解导致这种行为的大脑事件。我们将重点关注神经元活动
FEF 由于其在控制随意眼球运动方面的重要作用。该提案各有 3 个目标
专注于已知在自然条件下引导眼球运动的不同因素。显着性
描述视觉场景的一小部分与基于刺激的场景的其余部分有多么不同
颜色、对比度、形状和方向等特征。我们的第一个目标将定义显着性的影响
根据 FEF 活动。在我们的第二个目标中,我们将量化相关性的影响。相关性是指
视觉特征对于当前任务的重要性;例如,如果我们正在寻找红色目标,则红色项目
该图像将更有可能吸引我们的注意力,并最终成为眼球运动的目标。会心
场景的广泛构成,一种称为场景要点的质量,可以告诉我们物体所在的位置
更有可能被发现。例如,如果我们正在寻找自行车,我们更有可能搜索人行道
和街道场景的道路,而忽略其他不太可能找到自行车的地方。我们的最终目标
将寻找场景要点对猴子行为的影响以及驱动该行为的 FEF 活动。在
除了上面概述的大脑记录实验之外,我们的很大一部分努力将致力于
我们获得的行为和神经元数据的数学分析和建模。我们的最终目标是
提供了一个模型来预测显着性、相关性和要点对 FEF 神经元活动的贡献。
成功的模型将是一个数学表示,可以预测 FEF 中与搜索相关的活动:
人工和现实世界的条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konrad P. Kording其他文献
Downstream network transformations dissociate neural activity from causal functional contributions
下游网络转换将神经活动与因果功能贡献分离
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.6
- 作者:
Kayson Fakhar;Shrey Dixit;Fatemeh Hadaeghi;Konrad P. Kording;Claus C. Hilgetag - 通讯作者:
Claus C. Hilgetag
Measuring Causal Effects of Civil Communication without Randomization
在非随机化的情况下测量民间传播的因果效应
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tony Liu;Lyle Ungar;Konrad P. Kording;Morgan McGuire - 通讯作者:
Morgan McGuire
A Probabilistic Model of Meetings That Combines Words and Discourse Features
结合词语和话语特征的会议概率模型
- DOI:
10.1109/tasl.2008.925867 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:0
- 作者:
Mike Dowman;Virginia Savova;Thomas L. Griffiths;Konrad P. Kording;J. B. Tenenbaum;Matthew Purver - 通讯作者:
Matthew Purver
Empirical influence functions to understand the logic of fine-tuning
经验影响函数来理解微调的逻辑
- DOI:
10.48550/arxiv.2406.00509 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:0
- 作者:
Jordan K Matelsky;Lyle Ungar;Konrad P. Kording - 通讯作者:
Konrad P. Kording
movement representations Statistical assessment of the stability of neural
运动表征神经稳定性的统计评估
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ian H. Stevenson;Anil Cherian;B. M. London;N. Sachs;E. Lindberg;Jacob Reimer;M. Slutzky;N. Hatsopoulos;Lee E. Miller;Konrad P. Kording - 通讯作者:
Konrad P. Kording
Konrad P. Kording的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konrad P. Kording', 18)}}的其他基金
Grassroots Rigor: making rigorous research practices accessible, meaningful, and building a community around them
草根严谨:使严格的研究实践变得可行、有意义,并围绕它们建立一个社区
- 批准号:
10673711 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
Grassroots Rigor: making rigorous research practices accessible, meaningful, and building a community around them
草根严谨:使严格的研究实践变得可行、有意义,并围绕它们建立一个社区
- 批准号:
10513441 - 财政年份:2022
- 资助金额:
$ 37.65万 - 项目类别:
LifeSense: Transforming Behavioral Assessment of Depression Using Personal Sensing Technology
LifeSense:利用个人感知技术改变抑郁症的行为评估
- 批准号:
9982127 - 财政年份:2017
- 资助金额:
$ 37.65万 - 项目类别:
Massive scale electrical neural recordings in vivo using commercial ROIC chips
使用商用 ROIC 芯片进行大规模体内电神经记录
- 批准号:
9558974 - 财政年份:2017
- 资助金额:
$ 37.65万 - 项目类别:
Massive scale electrical neural recordings in vivo using commercial ROIC chips
使用商用 ROIC 芯片进行大规模体内电神经记录
- 批准号:
9011964 - 财政年份:2015
- 资助金额:
$ 37.65万 - 项目类别:
Massive scale electrical neural recordings in vivo using commercial ROIC chips
使用商用 ROIC 芯片进行大规模体内电神经记录
- 批准号:
9146823 - 财政年份:2015
- 资助金额:
$ 37.65万 - 项目类别:
Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
- 批准号:
8451290 - 财政年份:2012
- 资助金额:
$ 37.65万 - 项目类别:
Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
- 批准号:
8634100 - 财政年份:2012
- 资助金额:
$ 37.65万 - 项目类别:
Neural Mechanisms of Fixation Choice while Searching Natural Scenes
搜索自然场景时注视选择的神经机制
- 批准号:
8297707 - 财政年份:2012
- 资助金额:
$ 37.65万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Health and Financial Costs of Unequal Care: Colorectal Cancer as a Case Study
不平等护理的健康和财务成本:结直肠癌案例研究
- 批准号:
10656807 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
- 批准号:
10601929 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 37.65万 - 项目类别: