Optical design and the development of high accuracy automated tick classification using computer vision

使用计算机视觉进行光学设计和高精度自动蜱分类的开发

基本信息

  • 批准号:
    10325667
  • 负责人:
  • 金额:
    $ 29.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Abstract. The incidence of US tick-borne diseases has more than doubled in the last two decades. Due to lack of effective vaccines for tick-borne diseases, prevention of tick bites remains the primary focus of disease mitigation. Tick vector surveillance—monitoring an area to understand tick species composition, abundance, and spatial distribution—is key to providing the public with accurate and up-to-date information when they are in areas of high risk, and enabling precision vector control when necessary. Despite the importance of vector surveillance, current practices are highly resource intensive and require significant labor and time to collect and identify vector specimens. Acarologist or field taxonomist expertise is a limited resource required for tick identification, creating a significant capability barrier for national tick surveillance practice. While mobile applications to facilitate passive surveillance and reporting of human-tick encounters have grown in popularity, variable image quality, limited engagement, and scientist misidentification of rare, invasive, or morphologically similar tick species hinder the scalability of this approach. No automated solutions exist to build tick identification capacity. We seek to develop the first imaging and automated identification system capable of instantaneously and accurately identifying the top nine tick vectors in the US. This proposal will first characterize the optical requirements necessary to image diagnostic morphological features associated with adult ticks and develop a standardized imaging platform for tick identification. This will enable the development of a high-quality tick image dataset in partnership with the Walter Reed Biosystems Unit (WRBU) which will be used to train high-accuracy computer vision models for tick species and sex identification. Ultimately the approaches developed here will enable new tick identification tools for both the lab and citizen scientists; allowing vector surveillance managers to leverage image recognition in a practical system that will increase capacity and capability for biosurveillance, and equipping citizen scientists with improved tools to identify tick species during a human-tick encounter.
摘要。 数十年。 仍然是缓解疾病的主要重点。 了解壁虱物种成分,丰度和空间分布 - 是提供的关键 具有准确和最新信息的公众是高风险,风险和风险的领域。 在必要时启用精度向量控制。 监视,当前做法是高度资源密集的,需要大量的员工和 是时候收集和识别矢量标本了。 刻度识别所需的资源有限,为Forof创造了重大的能力障碍 全国性的监视练习。 人类挑战的报道在受欢迎程度,可变图像质量中增长,有限 参与度,科学家误认了罕见,侵入性或形态类似的tick虫 物种阻碍了这种方法的可扩展性。 识别能力。我们寻求开发第一个成像和自动化系统 能够即时,准确地识别美国的前9个tick矢量。 提案将首先描述图像诊断所需的光学要求 与成人壁虱相关的形态特征并开发标准化成像平台 对于刻度识别,这将使在 与Walter Reed Biosystems(WRBU)的合作伙伴关系将用于培训 高准确的计算机视觉模型,最终是您的 这里开发的方法将为实验室和公民提供新的tick识别工具 科学家;允许矢量监视经理在实用中利用图像识别 随着生物监视的能力和能力的提高,并为公民装备的系统 具有改进工具的科学家在人杀手中识别壁虱物种。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Autumn Goodwin其他文献

Autumn Goodwin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Autumn Goodwin', 18)}}的其他基金

I-Corps: Optical design and the development of high accuracy automated tick classification using computer vision
I-Corps:使用计算机视觉进行光学设计和高精度自动蜱分类的开发
  • 批准号:
    10561399
  • 财政年份:
    2022
  • 资助金额:
    $ 29.57万
  • 项目类别:
High accuracy automated tick classification using computer vision
使用计算机视觉进行高精度自动蜱分类
  • 批准号:
    10699845
  • 财政年份:
    2022
  • 资助金额:
    $ 29.57万
  • 项目类别:

相似国自然基金

基于资源调度和预测控制的无线网络化控制系统的联合设计
  • 批准号:
    61673350
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
可扩展内容感知路由架构、协议及算法设计
  • 批准号:
    61402255
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
理性密码协议的效率优化及可证明安全方法研究
  • 批准号:
    61363068
  • 批准年份:
    2013
  • 资助金额:
    43.0 万元
  • 项目类别:
    地区科学基金项目
密码协议和算法若干问题研究:理论及应用
  • 批准号:
    61272012
  • 批准年份:
    2012
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
新签密算法的设计、分析和应用研究
  • 批准号:
    60873233
  • 批准年份:
    2008
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目

相似海外基金

Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
  • 批准号:
    10603975
  • 财政年份:
    2023
  • 资助金额:
    $ 29.57万
  • 项目类别:
Re-examining links between screen time, health behaviors, and executive functioning: Validating an objective measure of screen exposure in a sample of young children
重新审视屏幕时间、健康行为和执行功能之间的联系:验证幼儿样本中屏幕暴露时间的客观测量
  • 批准号:
    10725847
  • 财政年份:
    2023
  • 资助金额:
    $ 29.57万
  • 项目类别:
Intensive Speech Motor Chaining Treatment and Artificial Intelligence Integration for Residual Speech Sound Disorders
残余言语障碍的强化言语运动链治疗和人工智能整合
  • 批准号:
    10635488
  • 财政年份:
    2023
  • 资助金额:
    $ 29.57万
  • 项目类别:
Enhancing the Efficiency of Pragmatic Clinical Trials Using Administrative Data: Analysis of the STRIDE Study
使用管理数据提高实用临床试验的效率:STRIDE 研究分析
  • 批准号:
    10365009
  • 财政年份:
    2022
  • 资助金额:
    $ 29.57万
  • 项目类别:
Development and Commercialization of a pupillometer to predict postoperative opioid-induced respiratory depression in children
用于预测儿童术后阿片类药物引起的呼吸抑制的瞳孔计的开发和商业化
  • 批准号:
    10390249
  • 财政年份:
    2022
  • 资助金额:
    $ 29.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了