Intensive Speech Motor Chaining Treatment and Artificial Intelligence Integration for Residual Speech Sound Disorders
残余言语障碍的强化言语运动链治疗和人工智能整合
基本信息
- 批准号:10635488
- 负责人:
- 金额:$ 59.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdolescentAdultAffectAgreementAlgorithmsAmericanArticulation DisordersArtificial IntelligenceBehavioral ResearchCase StudyChildChronicClassificationClinicalCommunication impairmentConsensusDetectionDevelopmentDiseaseDoseEducationEmotionalEvidence based practiceExperimental DesignsFeedbackFrequenciesGoalsHumanIndividualInvestigationJudgmentLanguageLearningLongevityMediatingMissionMotorNational Institute on Deafness and Other Communication DisordersOccupationalOutcomeParticipantPathologistPerformanceProductionPublic HealthQuality of lifeRandomized, Controlled TrialsRecommendationResearchResearch DesignResidual stateResourcesSpeechSpeech SoundStimulusSystemTechnologyTeletherapyTestingTherapeuticTimeTrainingTreatment EfficacyTreatment FailureUnited States National Institutes of HealthWorkagedalgorithm trainingclassification algorithmclinical efficacydesigndisabilityeffective therapyevidence baseexperienceimprovedimproved outcomeineffective therapiesinnovationmotor learningoptimal treatmentsservice deliveryskillssocialsoundtoolweb app
项目摘要
Project Summary/Abstract
Speech sound disorders impacting /ɹ, s, z/ may become chronic due to either ineffective or limited treat-
ment. The long-term goal is to leverage theoretical and technological advancements to accelerate the develop-
ment of accessible and effective treatments that mitigate reduced quality of life due to chronic residual speech
sound disorders (RSSD). To this end, the validated motor-based RSSD treatment Speech Motor Chaining guides
speech-language pathologists (SLPs) through high-fidelity, high-trial, rapidly adapting treatment by dosing and
manipulating several principles of motor learning in real time. SLP-led Speech Motor Chaining has been effective
for individuals whose errors persist after traditional treatment. However, at least two challenges remain: first,
optimal treatment intensity is unknown. Second, SLPs need validated avenues for evidence-based practice when
caseload size precludes optimal intensity. Therefore, the overall objective of this proposal is to optimize a suite
of theoretically motivated, high-fidelity, motor-based treatments delivered at the appropriate intensity, despite
practical barriers, for the sounds comprising 90% of RSSD: /ɹ, s, z/. The central working hypotheses, supported
by our preliminary work, are that Speech Motor Chaining is (a) more efficacious when delivered intensively (i.e.,
closely spaced for a fixed number of sessions), and (b) also beneficial when practice is led by an artificial intelli-
gence (AI) SLP. The theoretical rationale is that increasing intensity early in treatment will mitigate erred prac-
tice between sessions, improving outcomes relative to more customary practice distributions, and that reliable
AI-mediated practice is effective in the context of validated treatments. There are three aims: Aim 1: Deter-
mine how intensive/distributed treatment affects speech sound learning in RSSD. A randomized
controlled trial (n=84) will test the hypothesis that intensive SLP-led Speech Motor Chaining (i.e., bootcamp)
leads to greater gains in speech sound accuracy compared to an equivalent number of customarily distributed
sessions. Aim 2: Determine improvement in /ɹ/ production when Speech Motor Chaining practice
trials are led by an Artificial Intelligence clinician. A multiple baseline single subject design will test the
hypothesis that Chaining-AI, in which an AI SLP provides clinical feedback, facilitates clinically meaningful
change in /ɹ/ production. Aim 3: Demonstrate breadth of clinical AI capability by optimizing mis-
pronunciation classification algorithms for /s/ and /z/. Mispronunciation detection algorithms will be
trained to recognize clinical speech errors affecting /s/ and /z/, replicating expert listener judgement with clini-
cally-acceptable accuracy. This significant research addresses a critical need for theoretical/empirical guidance
for treatment intensity, offering sorely needed recommendations in a system where ~6 million American adults
have unresolved RSSD. This innovative research accelerates a paradigm shift in which combined SLP/AI service
delivery could overcome barriers to effective, accessible, and sufficiently intensive treatment, for 90% of RSSD.
项目概要/摘要
由于治疗无效或有限,影响/ɹ、s、z/的言语障碍可能会变成慢性的。
长期目标是利用理论和技术进步来加速发展。
寻找可行且有效的治疗方法,以减轻因长期残留言语而导致的生活质量下降
为此,经过验证的基于运动的 RSSD 治疗语音运动链指南。
言语病理学家(SLP)通过高保真、高试验、通过剂量和剂量快速调整治疗
实时操纵运动学习的几个原理是有效的。
对于在传统治疗后仍然存在错误的人来说,至少存在两个挑战:首先,
其次,SLP 需要经过验证的循证实践途径。
案件量大小妨碍了最佳强度因此,该提案的总体目标是优化套件。
尽管有理论动机,但以适当的强度提供高保真、基于运动的治疗
实用,对于占 RSSD 的 90% 的声音:障碍 /ɹ、s、z/ 支持中心工作假设。
根据我们的初步工作,语音电机链接 (a) 在密集交付时更有效(即,
(在固定数量的会话中间隔紧密),并且(b)当练习由人工智能主导时也是有益的
gence (AI) SLP 的理论依据是,在治疗早期增加强度将减少错误的实践。
在会议之间,相对于更习惯的实践分布改善结果,并且可靠
人工智能介导的实践在经过验证的治疗背景下是有效的,有以下三个目标: 目标 1:阻止-
我的研究是强化/分布式治疗如何影响 RSSD 中的语音学习。
对照试验 (n=84) 将检验以下假设:强化 SLP 主导的语音运动链(即训练营)
与同等数量的通常分布的语音相比,语音准确性有更大的提高
目标 2:确定语音运动链接练习时 /ɹ/ 生成的改进。
试验由人工智能临床医生领导,将测试多基线单受试者设计。
假设 Chaining-AI(其中 AI SLP 提供临床反馈)有助于具有临床意义的
目标 3:通过优化错误来展示临床人工智能能力的广度。
/s/ 和 /z/ 的发音分类算法将是发音检测算法。
经过训练,可以识别影响 /s/ 和 /z/ 的临床言语错误,用 clini- 复制专家听众的判断
这项重要的研究解决了对理论/经验指导的迫切需求。
针对治疗强度,在约 600 万美国成年人参与的系统中提供急需的建议
这项创新研究加速了 SLP/AI 服务相结合的范式转变。
对于 90% 的 RSSD 来说,交付可以克服有效、可及和充分强化治疗的障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Preston其他文献
Jonathan Preston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Preston', 18)}}的其他基金
Treating Childhood Apraxia of Speech: Role of Biofeedback & Practice Distribution
治疗儿童言语失用症:生物反馈的作用
- 批准号:
9377668 - 财政年份:2017
- 资助金额:
$ 59.13万 - 项目类别:
Ultrasound Biofeedback for Therapy-Resistant Speech Sound Disorders in Children
超声生物反馈治疗儿童难治性言语障碍
- 批准号:
8627229 - 财政年份:2013
- 资助金额:
$ 59.13万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Targeting PLK1 signaling for the treatment of fibrolamellar carcinoma
靶向 PLK1 信号传导治疗纤维板层癌
- 批准号:
10742683 - 财政年份:2023
- 资助金额:
$ 59.13万 - 项目类别:
Neurodevelopment of exploration and alcohol problems in adolescence
青春期探索和酒精问题的神经发育
- 批准号:
10628964 - 财政年份:2023
- 资助金额:
$ 59.13万 - 项目类别:
Clinical, molecular, and immune characterization of naturally occurring osteosarcoma in dogs
犬自然发生的骨肉瘤的临床、分子和免疫特征
- 批准号:
10717426 - 财政年份:2023
- 资助金额:
$ 59.13万 - 项目类别:
Substance Use and Firearm Injuries among Medicaid-enrolled Youth
参加医疗补助的青少年的药物使用和枪伤
- 批准号:
10811094 - 财政年份:2023
- 资助金额:
$ 59.13万 - 项目类别: