Intensive Speech Motor Chaining Treatment and Artificial Intelligence Integration for Residual Speech Sound Disorders
残余言语障碍的强化言语运动链治疗和人工智能整合
基本信息
- 批准号:10635488
- 负责人:
- 金额:$ 59.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
Speech sound disorders impacting /ɹ, s, z/ may become chronic due to either ineffective or limited treat-
ment. The long-term goal is to leverage theoretical and technological advancements to accelerate the develop-
ment of accessible and effective treatments that mitigate reduced quality of life due to chronic residual speech
sound disorders (RSSD). To this end, the validated motor-based RSSD treatment Speech Motor Chaining guides
speech-language pathologists (SLPs) through high-fidelity, high-trial, rapidly adapting treatment by dosing and
manipulating several principles of motor learning in real time. SLP-led Speech Motor Chaining has been effective
for individuals whose errors persist after traditional treatment. However, at least two challenges remain: first,
optimal treatment intensity is unknown. Second, SLPs need validated avenues for evidence-based practice when
caseload size precludes optimal intensity. Therefore, the overall objective of this proposal is to optimize a suite
of theoretically motivated, high-fidelity, motor-based treatments delivered at the appropriate intensity, despite
practical barriers, for the sounds comprising 90% of RSSD: /ɹ, s, z/. The central working hypotheses, supported
by our preliminary work, are that Speech Motor Chaining is (a) more efficacious when delivered intensively (i.e.,
closely spaced for a fixed number of sessions), and (b) also beneficial when practice is led by an artificial intelli-
gence (AI) SLP. The theoretical rationale is that increasing intensity early in treatment will mitigate erred prac-
tice between sessions, improving outcomes relative to more customary practice distributions, and that reliable
AI-mediated practice is effective in the context of validated treatments. There are three aims: Aim 1: Deter-
mine how intensive/distributed treatment affects speech sound learning in RSSD. A randomized
controlled trial (n=84) will test the hypothesis that intensive SLP-led Speech Motor Chaining (i.e., bootcamp)
leads to greater gains in speech sound accuracy compared to an equivalent number of customarily distributed
sessions. Aim 2: Determine improvement in /ɹ/ production when Speech Motor Chaining practice
trials are led by an Artificial Intelligence clinician. A multiple baseline single subject design will test the
hypothesis that Chaining-AI, in which an AI SLP provides clinical feedback, facilitates clinically meaningful
change in /ɹ/ production. Aim 3: Demonstrate breadth of clinical AI capability by optimizing mis-
pronunciation classification algorithms for /s/ and /z/. Mispronunciation detection algorithms will be
trained to recognize clinical speech errors affecting /s/ and /z/, replicating expert listener judgement with clini-
cally-acceptable accuracy. This significant research addresses a critical need for theoretical/empirical guidance
for treatment intensity, offering sorely needed recommendations in a system where ~6 million American adults
have unresolved RSSD. This innovative research accelerates a paradigm shift in which combined SLP/AI service
delivery could overcome barriers to effective, accessible, and sufficiently intensive treatment, for 90% of RSSD.
项目摘要/摘要
言语障碍影响 /ɹ,s,z /可能由于无效或有限的治疗而变得慢性
精神。长期目标是利用理论和技术进步来加速发展 -
可访问有效的治疗方法可减轻由于长期残留语音而减少生活质量
声音障碍(RSSD)。为此,经过验证的基于电机的RSSD处理语音电动机链条指南
语言病理学家(SLP)通过高保真,高审判,迅速适应治疗
实时操纵运动学习的几种原则。 SLP领导的语音电动机链接已有效
对于那些在传统治疗后持续存在错误的人。但是,至少仍然存在两个挑战:首先,
最佳治疗强度尚不清楚。其次,SLP需要经过验证的途径,以进行循证实践
案件尺寸排除了最佳强度。因此,该提案的总体目标是优化套件
理论上动机,高保真,基于运动的治疗以适当的强度,多叠岩提供
实用的障碍,对于完成RSSD的90%的声音: /ɹ,s,z /。中央工作假设,支持
根据我们的初步工作
在固定数量的会话中近距离),并且(b)当练习由人工智能领导时,也有益
大道(AI)SLP。理论上的理由是,在治疗早期的强度增加将减轻误解的prac-
会议之间的挑战,改善相对于更习惯的实践分布的结果以及可靠的
AI介导的实践在经过验证的治疗范围内有效。有三个目的:目标1:阻止 -
挖掘了RSSD中的强化/分布处理如何影响语音学习。一个随机
对照试验(n = 84)将检验以下假设,即密集的SLP主导电动机链(即训练营)
与常规分布数量相比
会议。目标2:确定语音电动机链接实践时 /ɹ /生产的改进
试验由人工智能临床领导。多个基线单一主题设计将测试
AI SLP提供临床反馈的链接AA的假设促进了临床意义
更改 /ɹ /生产。 AIM 3:通过优化错误来证明临床AI能力的广度
/s /和 /z /的发音分类算法。错误发音检测算法将是
经过培训以识别影响 /s /和 /z /的临床语音错误,通过诊所复制专家听众法官
可以接受的准确性。这项重大研究旨在解决理论/经验指导的关键需求
为了治疗强度,在约600万美国成年人的系统中提供了非常需要的建议
没有解决的RSSD。这项创新的研究加速了SLP/AI服务的范式转变
对于RSSD的90%,交付可以克服有效,可访问和足够密集的治疗的障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Jonathan Preston的其他基金
Treating Childhood Apraxia of Speech: Role of Biofeedback & Practice Distribution
治疗儿童言语失用症:生物反馈的作用
- 批准号:93776689377668
- 财政年份:2017
- 资助金额:$ 59.13万$ 59.13万
- 项目类别:
Ultrasound Biofeedback for Therapy-Resistant Speech Sound Disorders in Children
超声生物反馈治疗儿童难治性言语障碍
- 批准号:86272298627229
- 财政年份:2013
- 资助金额:$ 59.13万$ 59.13万
- 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting PLK1 signaling for the treatment of fibrolamellar carcinoma
靶向 PLK1 信号传导治疗纤维板层癌
- 批准号:1074268310742683
- 财政年份:2023
- 资助金额:$ 59.13万$ 59.13万
- 项目类别:
Clinical, molecular, and immune characterization of naturally occurring osteosarcoma in dogs
犬自然发生的骨肉瘤的临床、分子和免疫特征
- 批准号:1071742610717426
- 财政年份:2023
- 资助金额:$ 59.13万$ 59.13万
- 项目类别:
Neurodevelopment of exploration and alcohol problems in adolescence
青春期探索和酒精问题的神经发育
- 批准号:1062896410628964
- 财政年份:2023
- 资助金额:$ 59.13万$ 59.13万
- 项目类别:
Substance Use and Firearm Injuries among Medicaid-enrolled Youth
参加医疗补助的青少年的药物使用和枪伤
- 批准号:1081109410811094
- 财政年份:2023
- 资助金额:$ 59.13万$ 59.13万
- 项目类别: