Marketplace Readiness of a Novel Transdiagnostic Assessment for Clinical Research and Practice
用于临床研究和实践的新型跨诊断评估的市场准备情况
基本信息
- 批准号:10323067
- 负责人:
- 金额:$ 32.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-16 至 2022-07-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionArchitectureAreaAssessment toolAttentionCategoriesClinicalClinical Assessment ToolClinical ResearchClinical assessmentsCodeCommunitiesConsumptionCritiquesDataDevelopmentDevicesDiagnosisDiagnosticDimensionsDiseaseElementsEnsureEnvironmentFrequenciesFutureGroupingHealthHealth Insurance Portability and Accountability ActHeterogeneityIndividualIntelligenceLabelLearningLifeLife ExperienceMapsMental HealthMental disordersOutcomeOutcomes ResearchOutputPatient RecruitmentsPatientsPhasePhenotypePopulationPrognosisPsyche structurePythonsReadinessRegimenReportingResearchResearch Domain CriteriaRiskSamplingScreening procedureSmall Business Innovation Research GrantSubcategorySymptomsSystemTestingTimeTreatment ProtocolsValidationVariantbaseclinical applicationclinical developmentclinical phenotypeclinical practicecomorbiditydesignexperiencefile formathealth assessmentindividual patientinsightinstrumentmental developmentnovelpersonalized diagnosticspersonalized screeningscreeningsystems researchtooltreatment choicetreatment researchusabilityweb-enabled
项目摘要
ABSTRACT
In this SBIR Phase 1 proposal, we aim to develop and automate the workflow for a comprehensive
transdiagnostic mental health assessment tool for increased precision in the screening of mental health. The
majority of instruments presently in use have been designed based on DSM criteria, which has been critiqued
for being theoretically defined and ignoring the heterogeneity of symptoms across patients. Furthermore,
individual tools are incomplete and heterogeneous in their assessment of symptoms for the same disorder. Thus,
individuals are placed into pre-defined categories that do not reflect their overall symptom experience and life
factors, and diagnosis can vary based on the choice of tool. This makes it difficult and time consuming to
understand individual patients to determine treatment trajectories, effectively recruit patients into research trials,
and understand outcomes based on complete symptom phenotypes. In order to address these challenges, a
novel assessment tool, the cMHQ, has been developed by our partner non-profit research organization, Sapien
Labs, and provides a comprehensive patient symptom profile that maps across 10 DSM-based mental health
disorders, as well as dimensional scores across six functional areas, thereby forming a bridge between the
current diagnostic environment and the more research oriented RDoC framework. The proposed research
focuses on transitioning the cMHQ and its outcomes from lab to marketplace to enable deeper clinical research
insights and provide more informed treatment and referral regimens. In aim 1, we will build the cMHQ’s input
assessment and diagnostic analysis by developing a responsive front-end assessment application and coding
analysis scripts to generate data scoring metrics and diagnostic criteria. In aim 2, we will develop multiple data-
output formats for the cMHQ that are tested for usability and acceptability, including an automatically generated
cMHQ clinician report that provides a clear and comprehensive analysis of the patient’s mental health profile
across multiple dimensions and disorders, as well as an API to enable tabular data outputs for integration into
research systems. As part of this aim, we will also integrate all of the elements into a scalable architecture for
testing and ensure HIPAA-compliance of the data-flow. If this project is successful, a further Phase 2 project will
be warranted to pilot test its application in clinical research and practice domains to demonstrate the benefits to
outcomes in both research and treatment.
抽象的
在此 SBIR 第一阶段提案中,我们的目标是开发工作流程并使其自动化,以实现全面的
跨诊断心理健康评估工具,可提高心理健康筛查的精确度。
目前使用的大多数仪器都是根据 DSM 标准设计的,该标准受到了批评
因为它是从理论上定义的,并且忽略了患者症状的异质性。
各个工具对同一疾病的症状的评估是不完整且异质的。
个体被置于预先定义的类别中,但这些类别并不反映他们的整体症状经历和生活
因素,并且诊断可能会根据工具的选择而有所不同,这使得诊断变得困难且耗时。
了解个体患者以确定治疗轨迹,有效招募患者参与研究试验,
并根据完整的症状表型了解结果 为了应对这些挑战,
新颖的评估工具 cMHQ 是由我们的合作伙伴非营利研究组织 Sapien 开发的
实验室,并提供全面的患者症状概况,涵盖 10 个基于 DSM 的心理健康
疾病以及六个功能领域的维度分数,从而在
当前的诊断环境和更多面向研究的 RDoC 框架。
专注于将 cMHQ 及其结果从实验室转移到市场,以实现更深入的临床研究
在目标 1 中,我们将建立 cMHQ 的意见并提供更明智的治疗和转诊方案。
通过开发响应式前端评估应用程序和编码来进行评估和诊断分析
用于生成数据评分指标和诊断标准的分析脚本 在目标 2 中,我们将开发多个数据 -
cMHQ 的输出格式经过可用性和可接受性测试,包括自动生成的
cMHQ 临床医生报告对患者的心理健康状况提供清晰、全面的分析
跨多个维度和疾病,以及一个API,使表格数据输出能够集成到
作为这一目标的一部分,我们还将把所有元素集成到一个可扩展的架构中。
测试并确保数据流符合 HIPAA 如果该项目成功,将进行进一步的第 2 阶段项目。
有必要对其在临床研究和实践领域的应用进行试点测试,以证明其好处
研究和治疗的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tara Thiagarajan其他文献
Tara Thiagarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tara Thiagarajan', 18)}}的其他基金
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别:
Pharmacogenomics Workflow: Identifying Biomarkers and Treatment Options
药物基因组学工作流程:识别生物标志物和治疗方案
- 批准号:
10819933 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别:
Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning
通过人在环深度学习早期检测胰腺癌
- 批准号:
10592060 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别:
Improving cross ancestry polygenic prediction of tobacco and alcohol use
改进烟草和酒精使用的跨血统多基因预测
- 批准号:
10739557 - 财政年份:2023
- 资助金额:
$ 32.17万 - 项目类别: