Ultrasound Enhanced Extracorporeal Membrane Oxygenation
超声增强体外膜氧合
基本信息
- 批准号:10323520
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAdultAdvanced DevelopmentAnimalsAnticoagulantsAnticoagulationAreaAutomobile DrivingBiocompatible MaterialsBloodBlood PlateletsBlood coagulationBlood gasCapitalChildhoodClinicalCoagulation ProcessConsumptionCustomDeep Vein ThrombosisDepositionDevelopmentDevicesDiffusionDiseaseEntrepreneurshipExtracorporeal Membrane OxygenationFiberFrequenciesFundingGasesGenerationsGeometryGuidelinesHeatingHemolysisHemorrhageHeparinIncidenceInjuryInternationalIntracranial HemorrhagesLungMedicalMembraneMeniscus structure of jointNanoporousOxygenOxygenatorsPF4 GenePatient-Focused OutcomesPatientsPhasePhysiologic pulsePolypropylenesPositioning AttributeProcessProteinsPulmonary EmbolismQuality of lifeRecording of previous eventsRegistriesReportingRiskSafetyScienceSonicationStreamSurfaceSystemTherapeuticThickThrombosisTransducersTravelUltrasonographyVenous ThrombosisWorkabsorptionblood damageclinically relevantdesignheart functionimprovedmortalityneonatenoveloxygen transportpulmonary functionsafety outcomessuccessventricular assist device
项目摘要
PROJECT SUMMARY
Approximately 16,000 patients received artificial pulmonary support via extra-corporeal membrane oxygenation
(ECMO) in 2019. During ECMO, hollow fiber membrane (HFM) gas exchangers require a surface area of ~2
m2 to achieve therapeutic gas transfer; however, this large contact area with the blood activates the
coagulation cascade that requires systemic anticoagulation for suppression, usually with heparin. Although
heparin reduces the frequency of clotting, it does not effectively inhibit the surface deposition of platelets and
proteins. The consumption of these critical clotting components, as well as continuous administration of
systemic anticoagulant, results in an increased risk of bleeding during ECMO and increases the risk of
complications and mortality.
We propose that reducing the surface area of the HFM gas exchanger will lead to less clotting and require less
anticoagulant use, reducing the incidence of both thrombosis and hemorrhage. To achieve this, Boundless
Science is developing a novel blood oxygenation system that uses ultrasound to dramatically enhance gas
transfer efficiency, and thereby reduce the required gas exchanger area. A smaller gas exchanger will induce
less clotting and require less anticoagulation and associated bleeding risks. An additional benefit is that a
smaller surface area will allow us to develop a dramatically smaller ECMO system, offering the potential for
ambulatory ECMO. Our initial results with ultrasound-enhanced ECMO (US-ECMO) show that ultrasound (US)
enhances the rate of oxygen transport across a planar nano-porous polypropylene membrane by 4–6.4-fold.
We hypothesize that US enhances transport through two mechanisms. First, the absorption of US travelling
through the blood induces a bulk force, which in turn generates flow known as bulk streaming. Second, US
oscillates gas/blood menisci at the membrane surface, rapidly mixing the blood near the membrane in a
process known as microstreaming. Blood mixing from these mechanisms disrupts the boundary layer at the
blood-membrane interface, steepening the oxygen gradient and driving faster diffusion.
This proposal seeks to identify the US and membrane configurations that maximize gas exchange within
clinically relevant HFM. We will constrain US parameters to avoid blood damage. We will progress toward this
objective through the following specific aims. Aim 1) Determine the specific ultrasound parameters (amplitude,
frequency, duty cycle, pulse duration, and transducer geometry) that separately optimize bulk streaming and
microstreaming, while avoiding hemolysis, inertial cavitation, excessive heating, and bubble generation. Aim 2)
Determine the maximal fiber bundle thickness over which acoustic streaming and microstreaming are effective.
Aim 3) Fabricate and evaluate a custom ultrasound delivery system that safely enhances oxygen transport by
at least seven-fold. Successful results will not only show the potential of US-ECMO but will provide the
necessary design guidelines to drive the development of a clinically viable US-ECMO system.
项目摘要
大约16,000名患者通过体外膜氧合获得了人工肺部支持
(ECMO)在2019年。在ECMO期间,空心纤维膜(HFM)气体交换器需要〜2的表面积
M2实现热气体转移;但是,与血液的大型接触区域激活
凝血级联反应需要全身性抗凝治疗抑制,通常用肝素抑制。虽然
肝素降低了衣服的频率,它不会有效地抑制血小板的表面沉积
蛋白质。这些关键的凝血组件的消费以及连续给药
全身性抗凝剂,导致ECMO期间出血的风险增加,并增加
并发症和死亡率。
我们建议减少HFM气体交换器的表面积会导致衣服更少,并且需要更少
抗凝剂的使用,减少了血栓形成和出血的事件。为了实现这一目标,无限
科学正在开发一种新型的血液氧合系统,该系统使用超声波大大增强气体
转移效率,从而降低所需的气体交换器区域。较小的汽油交换器将诱发
较少的衣服,需要更少的抗凝治疗和相关的出血风险。另一个好处是
较小的表面积将使我们能够开发一个动态较小的ECMO系统,从而提供了潜力
门诊经济。我们使用超声增强的ECMO(US-ECMO)的最初结果表明,超声(US)
以4-6.4倍的速度提高氧气转运速率。
我们假设美国通过两种机制增强了运输。首先,我们旅行的吸收
通过血液诱导巨大力,进而产生称为散装流的流动。第二,我们
在膜表面振荡气体/血液半月板,迅速将血液迅速混合
被称为微流的过程。这些机制的血液混合破坏了边界层
血膜界面,使氧梯度陡峭并驱动更快的扩散。
该建议旨在确定美国和膜配置,以最大程度地提高气体交换
临床相关的HFM。我们将限制我们的参数以避免血液损害。我们将进步
通过以下特定目的进行客观。目标1)确定特定的超声参数(振幅,
频率,占空比,脉搏持续时间和换能器几何形状)分别优化散装流和
微流避免溶血,惯性空化,过量加热和产生气泡。目标2)
确定声流和微流有效的最大纤维束厚度。
目标3)制造和评估自定义的超声输送系统,该系统可以安全地通过
至少七倍。成功的结果不仅会显示美国ECMO的潜力,而且还将提供
推动临床可行的US-ECMO系统开发的必要设计指南。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Jones其他文献
Andrew Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Jones', 18)}}的其他基金
Extra-Corporeal Oxygenator with Minimal Blood Surface Contact
与血液表面接触最少的体外氧合器
- 批准号:
10760184 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Aerosol Ventilation to Reduce Ventilator Induced Lung Injury
气雾通气可减少呼吸机引起的肺损伤
- 批准号:
10383334 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Aerosol Ventilation for Rapid Cooling of Transplant Donor Lungs
用于快速冷却移植供体肺的气雾通气
- 批准号:
10481907 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
- 批准号:
8573376 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
- 批准号:
8700369 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Advanced technology for neural interfaces based on microstimulation
基于微刺激的神经接口先进技术
- 批准号:
9094696 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 29.99万 - 项目类别: