THE INTEGRATION OF IL-17 AND NOTCH SIGNALING IN THE PATHOGENESIS OF CNS INFLAMMATION
IL-17 和 Notch 信号传导在中枢神经系统炎症发病机制中的整合
基本信息
- 批准号:10311763
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AblationAdaptor Signaling ProteinAddressAdultAffectAnimal ModelAreaAstrocytesAttenuatedBrainCell Differentiation processCell NucleusCell ProliferationChronicComplexCuprizoneDataDemyelinating DiseasesDemyelinationsDisease modelEnvironmentExperimental Autoimmune EncephalomyelitisExtracellular DomainGenesGenetic TranscriptionIL17 Signaling PathwayImpairmentInflammationInflammatoryInflammatory ResponseInterleukin-17Knock-in MouseLinkMediatingModelingMolecularMultiple SclerosisMultiple Sclerosis LesionsMusMyelinNOTCH1 geneNerve DegenerationNeuraxisNeurologic DeficitNuclearOligodendrogliaOutcomePathogenesisPathogenicityPathway interactionsPatientsPeptidesPhasePlayProcessProliferatingResearchRoleSignal TransductionSliceSpinal CordStructure-Activity RelationshipSymptomsTestingTherapeuticUnited StatesWorkbasecell typecentral nervous system demyelinating disorderchromatin immunoprecipitationcytokineimprovedin vivoinjury and repairinsightmultiple sclerosis patientnotch proteinnovel therapeutic interventionoligodendrocyte progenitorprogramspromoterreceptorremyelinationsix transmembrane epithelial antigen of the prostate 4standard carestem cell proliferationstem cellsubiquitin-protein ligase
项目摘要
Project Summary
Multiple Sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS).
Increasing evidence indicates that the inhibition of remyelination is a major cause of the permanent
neurodegeneration. However the precise mechanism that inhibits OPCs differentiation and remyelination
remains an active area of research. While inflammation-associated NOTCH1 activation was implicated in
defective remyelination in MS, the precise mechanism by which NOTCH1 was engaged during inflammatory
response remains elusive. Using experimental autoimmune encephalomyelitis (EAE), an animal model of MS,
we and others have established that IL-17 signaling is crucial for the induction of inflammation in the CNS. We
have now discovered a direct integration of IL-17 and NOTCH1 signaling that plays a dominant role in impairing
the differentiation of OPCs. IL-17 stimulation induced the release of the intracellular domain of NOTCH1 (NICD1)
in the OPCs co-cultured with astrocytes. Mechanistically, IL-17R interacts with NOTCH1 via the extracellular
domain, which facilitates the cleavage of NICD1. Subsequently, Act1, the adaptor protein for IL-17 signaling,
forms a complex with NICD1, followed by translocation of Act1-NICD1 complex into the nucleus. Act1-NICD1
complex promotes the assembly of RBP-J containing transcriptional complex on the promoters of NOTCH1
target genes implicated in CNS inflammation. Furthermore, a decoy peptide disrupting the IL-17RA–NOTCH1
interaction inhibited IL-17-induced NICD cleavage, reduced IL-17-induced OPC prolifereation and attenuated
the myelin loss in EAE model. Based on these findings, we hypothesize IL-17-NOTCH1 pathway drives the
expression of a specific set of genes to promote inflammation and inhibition of OPC differentiation, thereby
impairing the remyelination process in the demyelinating disease. We will test this hypothesis through Aim 1:
Investigate the molecular mechanism of the inhibitory role of IL-17-NOTCH1 integration on OPC differentiation.
Aim 2: Investigate the in vivo impact of IL-17-NOTCH1 integration on remyelination process. The completion of
this proposal will provide fundamental insight into the critical integration of signaling pathways of IL-17 and
NOTCH1, which underlies the pathogenesis of demyelinating disease, offering novel therapeutic strategies for
MS patients by promoting remyelination.
项目摘要
多发性硬化症(MS)是一种炎症性,脱髓鞘性疾病的中枢神经系统(CNS)。
越来越多的证据表明,抑制re髓是永久性的主要原因
神经变性。但是,抑制OPC分化和再髓的确切机制
仍然是研究的积极领域。虽然与炎症相关的Notch1激活涉及
MS中有缺陷的再髓,炎症过程中Notch1参与的精确机制
反应仍然难以捉摸。使用实验性自身免疫性脑脊髓炎(EAE),一种MS动物模型,
我们和其他人已经确定IL-17信号传导对于CNS诱导炎症至关重要。我们
现在已经发现了IL-17和Notch1信号的直接整合,在损害中起主要作用
OPC的区分。 IL-17刺激诱导Notch1的细胞内结构域的释放(NICD1)
在与星形胶质细胞共培养的OPC中。从机械上讲,IL-17R通过细胞外与Notch1相互作用
域,负责NICD1的裂解。随后,ACT1,用于IL-17信号传导的衔接蛋白,
与NICD1形成复合物,然后将ACT1-NICD1复合物转移到核中。 ACT1-NICD1
复合物促进了Notch1启动子上含有转录复合物的RBP-J的组装
CNS注射中实施的靶基因。此外,一种诱饵肽破坏了IL-17RA – NOTCH1
相互作用抑制IL-17诱导的NICD裂解,减少IL-17诱导的OPC增殖并减弱
EAE模型中的髓磷脂损失。根据这些发现,我们假设IL-17-Notch1途径驱动
表达一组特定基因以促进OPC分化的注射和抑制
损害脱髓鞘疾病中的再生过程。我们将通过目标1来检验这一假设:
研究IL-17-NOTCH1整合OPC分化的抑制作用的分子机制。
AIM 2:研究IL-17-Notch1整合对雷梅尔过程的体内影响。完成
该建议将为IL-17和
Notch1是脱髓鞘疾病的发病机理的基础,为新颖的治疗策略提供了
MS患者通过促进再髓式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zizhen Kang其他文献
Zizhen Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zizhen Kang', 18)}}的其他基金
Understanding the role of LRRK2 G2019S-mediated gut-brain axis in the pathogenesis of Parkinson's disease
了解 LRRK2 G2019S 介导的肠脑轴在帕金森病发病机制中的作用
- 批准号:
10584197 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
相似海外基金
Genetic and Molecular Etiology of Developmental Kidney and Urinary Tract Abnormalities in the DiGeorge, or 22q11.2, Syndrome.
DiGeorge 或 22q11.2 综合征发育性肾脏和尿路异常的遗传和分子病因学。
- 批准号:
10399743 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Targeting an RNA Binding Protein Network in Acute Myeloid Leukemia
靶向急性髓系白血病中的 RNA 结合蛋白网络
- 批准号:
10171812 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Targeting an RNA Binding Protein Network in Acute Myeloid Leukemia
靶向急性髓系白血病中的 RNA 结合蛋白网络
- 批准号:
10626928 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别:
Regulation of the Nrf2-mediated Antioxidant Defense In Diabetic Retinopathy
糖尿病视网膜病变中 Nrf2 介导的抗氧化防御的调节
- 批准号:
9908331 - 财政年份:2020
- 资助金额:
$ 33.8万 - 项目类别: