Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
基本信息
- 批准号:10301006
- 负责人:
- 金额:$ 46.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:Antineoplastic AgentsApicalBacteriophagesBindingBiochemicalBiological MarkersCancer Cell GrowthCarcinogenesis MechanismCause of DeathCell Culture TechniquesCell SurvivalCellsCellular AssayChemoresistanceComplexCrystallizationDNA DamageDNA Double Strand BreakDNA RepairDNA biosynthesisDNA lesionDouble Strand Break RepairEarly identificationEngineeringEnvironmental ExposureEnvironmental Risk FactorGenesGeneticGenomeGenome StabilityGenomic InstabilityGenomicsGenotoxic StressGerm CellsGoalsHumanIndividualKnowledgeLeadLesionLibrariesMaintenanceMalignant NeoplasmsMediator of activation proteinMissionModelingMolecularMusMutagenesisMutant Strains MiceMutationOncogenesOncogenicOutcomePathologicPathway interactionsPeptide LibraryPeptidesPermeabilityPhenotypeProblem SolvingProteinsPublic HealthResearchResistanceSignal TransductionSourceStressStructureTestingTherapeuticTherapeutic AgentsTissuesToxic effectTrans-ActivatorsTransgenic MiceUnited States National Institutes of HealthWorkbiophysical techniquescancer cellcancer testis antigencancer therapycarcinogenesisdefined contributiondruggable targetenvironmental agentexperienceexperimental studygenotoxicityhomologous recombinationimprovedin vivoinhibitorinnovationneoplastic cellnew therapeutic targetnovelnovel therapeutic interventionoverexpressionpressurepreventradiation resistancerecruitreplication stressresponsescreeningside effectstress tolerancetargeted treatmenttherapy resistanttumortumor molecular fingerprinttumorigenesistumorigenic
项目摘要
SUMMARY
There are fundamental gaps in our understanding of how neoplastic cells tolerate the oncogenic stress and
intrinsic DNA damage that arises during tumorigenesis, while simultaneously accumulating mutations that fuel
cancer. Unfortunately, the DNA damage tolerance and mutability acquired during carcinogenesis also allow
cancer cells to resist therapy. Filling the current gaps in our knowledge of DNA damage tolerance will allow us
to harness intrinsic and therapy-induced DNA damage to kill cancer cells. Our long-term goal is to solve the
problem of how cancer cells endure oncogenic stress and DNA damage. We recently discovered that cancer
cells commonly depend on aberrant activation of two major genome maintenance pathways (Trans-Lesion
Synthesis or TLS, and Homologous Recombination or HR) for DNA damage tolerance. This reliance on
'pathologically-activated' DNA repair is a new molecular vulnerability of cancer cells and provides opportunities
for highly selective targeted therapies. The objective here is to define signaling mechanisms by which cancer
cells activate TLS and HR. Our central hypothesis is that pathological DNA repair activity sustains cancer cell
growth and confers resistance to therapy. The rationale is that defining the mechanisms of pathologically-
activated DNA repair will reveal therapeutic strategies that target specific vulnerabilities of cancer cells. We
will test our central hypothesis and attain our objectives using the following Specific Aims (SAs): SA1
Elucidate structural basis for RAD18 activation by MAGE-A4. SA2 Define contribution of pathologically-
activated Trans-Lesion Synthesis (TLS) to oncogenic stress tolerance and carcinogenesis in vivo.
SA3 Define novel mechanism by which Homologous Recombination (HR) is pathologically activated via
HORMAD1 in cancer. SA1 will use biophysical methods and new peptide probes to elucidate the mechanism
by which MAGE-A4 interacts with RAD18. In SA2 mutant mice lacking Rad18 (the apical mediator of TLS) or
mice overexpressing MAGE-A4 (a cancer-specific activator of TLS) will be used to determine how TLS impacts
tumorigenesis and the genomic landscape of oncogene-driven cancers in vivo. For SA3 we will use cell
culture models to determine how the cancer/testes antigen HORMAD1 (which is aberrantly over-expressed in
cancer cells) signals activation of DSB repair, oncogenic stress tolerance and radioresistance. We propose
innovative new solutions to the important problems of how oncogenic stress tolerance and mutability arise,
drive carcinogenesis, and lead to therapy resistance. The proposed work is significant because we will provide
new paradigms for genome maintenance that are relevant to environmental exposures, mutagenesis,
tumorigenesis and cancer therapy in humans. This work will lead to novel therapeutic strategies that target
DNA damage tolerance specifically in cancer cells, thereby enhancing the efficacy and selectivity of existing
anti-cancer agents.
概括
我们对肿瘤细胞如何耐受致癌应激和致癌应激的理解存在根本性差距。
肿瘤发生过程中产生的内在 DNA 损伤,同时积累的突变会加剧
癌症。不幸的是,在致癌过程中获得的 DNA 损伤耐受性和突变性也允许
癌细胞抵抗治疗。填补目前我们在 DNA 损伤耐受性方面的知识空白将使我们能够
利用内在的和治疗引起的 DNA 损伤来杀死癌细胞。我们的长期目标是解决
癌细胞如何承受致癌压力和 DNA 损伤的问题。我们最近发现癌症
细胞通常依赖于两个主要基因组维持途径的异常激活(Trans-Lesion
合成或 TLS,以及同源重组或 HR)以实现 DNA 损伤耐受。这种依赖
“病理激活”的 DNA 修复是癌细胞的一种新的分子脆弱性,并提供了机会
用于高度选择性的靶向治疗。这里的目标是定义癌症的信号传导机制
细胞激活 TLS 和 HR。我们的中心假设是病理性 DNA 修复活性维持癌细胞
生长并赋予治疗抵抗力。基本原理是定义病理机制
激活的DNA修复将揭示针对癌细胞特定弱点的治疗策略。我们
将测试我们的中心假设并使用以下具体目标 (SA) 实现我们的目标:SA1
阐明 MAGE-A4 激活 RAD18 的结构基础。 SA2 定义病理学的贡献-
激活跨损伤合成(TLS)对致癌应激耐受和体内致癌作用。
SA3 定义同源重组 (HR) 通过病理激活的新机制
HORMAD1 在癌症中的作用。 SA1将利用生物物理方法和新的肽探针来阐明其机制
MAGE-A4 通过它与 RAD18 相互作用。在缺乏 Rad18(TLS 顶端介质)的 SA2 突变小鼠中或
过表达 MAGE-A4(TLS 的癌症特异性激活剂)的小鼠将用于确定 TLS 如何影响
肿瘤发生和体内癌基因驱动的癌症的基因组景观。对于 SA3,我们将使用单元格
培养模型以确定癌症/睾丸抗原 HORMAD1(在
癌细胞)发出 DSB 修复激活、致癌应激耐受性和放射抗性的信号。我们建议
针对致癌应激耐受性和突变性如何产生的重要问题提供创新的解决方案,
促进癌变,并导致治疗耐药。拟议的工作很重要,因为我们将提供
与环境暴露、诱变相关的基因组维护的新范例,
人类肿瘤发生和癌症治疗。这项工作将带来新的治疗策略
DNA 损伤耐受性,特别是在癌细胞中,从而增强现有疗法的功效和选择性
抗癌剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Hugh Pearce其他文献
Kenneth Hugh Pearce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Hugh Pearce', 18)}}的其他基金
Discovery of allosteric activators of phospholipase C-gamma2 to treat Alzheimer's disease
发现用于治疗阿尔茨海默病的磷脂酶 C-gamma2 变构激活剂
- 批准号:
10901007 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10185322 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10399533 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10598548 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10530649 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10132267 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10596489 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10363652 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
9905492 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
相似国自然基金
富集于上皮细胞膜顶端转录本magu-2的主动运输机制及功能研究
- 批准号:32300637
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马铃薯匍匐茎顶端弯钩发育过程中赤霉素介导蛋白质磷酸化调控机制
- 批准号:32360091
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
不同高度木本竹子因持续干旱而顶端枯死的生理机制
- 批准号:32360258
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
胞裂蛋白Sep4介导菌丝顶端多极性生长调控灰葡萄孢侵染垫起始发育的机制
- 批准号:32372489
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥Class II TCP转录因子调控雌蕊顶端命运决定的分子机制
- 批准号:32300291
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effect of Shiga toxin, OMVs, and innate immune cells on epithelial integrity of human colonoids during EHEC infection
志贺毒素、OMV 和先天免疫细胞对肠出血性大肠杆菌感染期间人结肠上皮完整性的影响
- 批准号:
10112822 - 财政年份:2020
- 资助金额:
$ 46.33万 - 项目类别:
Effect of Shiga toxin, OMVs, and innate immune cells on epithelial integrity of human colonoids during EHEC infection
志贺毒素、OMV 和先天免疫细胞对肠出血性大肠杆菌感染期间人结肠上皮完整性的影响
- 批准号:
9978339 - 财政年份:2020
- 资助金额:
$ 46.33万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10530649 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10062976 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Human Milk Oligosaccharides for Prevention of Alcohol-Associated Liver Disease
母乳低聚糖用于预防酒精相关性肝病
- 批准号:
10266673 - 财政年份:2018
- 资助金额:
$ 46.33万 - 项目类别: