Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
基本信息
- 批准号:10301006
- 负责人:
- 金额:$ 46.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:Antineoplastic AgentsApicalBacteriophagesBindingBiochemicalBiological MarkersCancer Cell GrowthCarcinogenesis MechanismCause of DeathCell Culture TechniquesCell SurvivalCellsCellular AssayChemoresistanceComplexCrystallizationDNA DamageDNA Double Strand BreakDNA RepairDNA biosynthesisDNA lesionDouble Strand Break RepairEarly identificationEngineeringEnvironmental ExposureEnvironmental Risk FactorGenesGeneticGenomeGenome StabilityGenomic InstabilityGenomicsGenotoxic StressGerm CellsGoalsHumanIndividualKnowledgeLeadLesionLibrariesMaintenanceMalignant NeoplasmsMediator of activation proteinMissionModelingMolecularMusMutagenesisMutant Strains MiceMutationOncogenesOncogenicOutcomePathologicPathway interactionsPeptide LibraryPeptidesPermeabilityPhenotypeProblem SolvingProteinsPublic HealthResearchResistanceSignal TransductionSourceStressStructureTestingTherapeuticTherapeutic AgentsTissuesToxic effectTrans-ActivatorsTransgenic MiceUnited States National Institutes of HealthWorkbiophysical techniquescancer cellcancer testis antigencancer therapycarcinogenesisdefined contributiondruggable targetenvironmental agentexperienceexperimental studygenotoxicityhomologous recombinationimprovedin vivoinhibitorinnovationneoplastic cellnew therapeutic targetnovelnovel therapeutic interventionoverexpressionpressurepreventradiation resistancerecruitreplication stressresponsescreeningside effectstress tolerancetargeted treatmenttherapy resistanttumortumor molecular fingerprinttumorigenesistumorigenic
项目摘要
SUMMARY
There are fundamental gaps in our understanding of how neoplastic cells tolerate the oncogenic stress and
intrinsic DNA damage that arises during tumorigenesis, while simultaneously accumulating mutations that fuel
cancer. Unfortunately, the DNA damage tolerance and mutability acquired during carcinogenesis also allow
cancer cells to resist therapy. Filling the current gaps in our knowledge of DNA damage tolerance will allow us
to harness intrinsic and therapy-induced DNA damage to kill cancer cells. Our long-term goal is to solve the
problem of how cancer cells endure oncogenic stress and DNA damage. We recently discovered that cancer
cells commonly depend on aberrant activation of two major genome maintenance pathways (Trans-Lesion
Synthesis or TLS, and Homologous Recombination or HR) for DNA damage tolerance. This reliance on
'pathologically-activated' DNA repair is a new molecular vulnerability of cancer cells and provides opportunities
for highly selective targeted therapies. The objective here is to define signaling mechanisms by which cancer
cells activate TLS and HR. Our central hypothesis is that pathological DNA repair activity sustains cancer cell
growth and confers resistance to therapy. The rationale is that defining the mechanisms of pathologically-
activated DNA repair will reveal therapeutic strategies that target specific vulnerabilities of cancer cells. We
will test our central hypothesis and attain our objectives using the following Specific Aims (SAs): SA1
Elucidate structural basis for RAD18 activation by MAGE-A4. SA2 Define contribution of pathologically-
activated Trans-Lesion Synthesis (TLS) to oncogenic stress tolerance and carcinogenesis in vivo.
SA3 Define novel mechanism by which Homologous Recombination (HR) is pathologically activated via
HORMAD1 in cancer. SA1 will use biophysical methods and new peptide probes to elucidate the mechanism
by which MAGE-A4 interacts with RAD18. In SA2 mutant mice lacking Rad18 (the apical mediator of TLS) or
mice overexpressing MAGE-A4 (a cancer-specific activator of TLS) will be used to determine how TLS impacts
tumorigenesis and the genomic landscape of oncogene-driven cancers in vivo. For SA3 we will use cell
culture models to determine how the cancer/testes antigen HORMAD1 (which is aberrantly over-expressed in
cancer cells) signals activation of DSB repair, oncogenic stress tolerance and radioresistance. We propose
innovative new solutions to the important problems of how oncogenic stress tolerance and mutability arise,
drive carcinogenesis, and lead to therapy resistance. The proposed work is significant because we will provide
new paradigms for genome maintenance that are relevant to environmental exposures, mutagenesis,
tumorigenesis and cancer therapy in humans. This work will lead to novel therapeutic strategies that target
DNA damage tolerance specifically in cancer cells, thereby enhancing the efficacy and selectivity of existing
anti-cancer agents.
概括
我们对肿瘤细胞如何耐受致癌应激和
肿瘤发生期间产生的固有DNA损伤,同时积累了燃料的突变
癌症。不幸的是,在致癌过程中获得的DNA损伤耐受性和可突变性也允许
癌细胞抵抗治疗。填补我们对DNA损伤耐受性的了解中的当前空白将使我们
利用固有和治疗诱导的DNA损伤以杀死癌细胞。我们的长期目标是解决
癌细胞如何忍受致癌应激和DNA损伤的问题。我们最近发现癌症
细胞通常取决于两个主要基因组维持途径的异常激活(跨性质
用于DNA损伤耐受性的合成或TLS以及同源重组或HR)。这种依赖
“病理激活”的DNA修复是癌细胞的新分子脆弱性,并提供机会
用于高度选择性的靶向疗法。这里的目的是定义癌症的信号传导机制
细胞激活TLS和HR。我们的中心假设是病理DNA修复活性维持癌细胞
生长并赋予对治疗的抵抗力。理由是定义病理学机制
活化的DNA修复将揭示针对癌细胞特定脆弱性的治疗策略。我们
将测试我们的中心假设,并使用以下特定目的(SAS)实现我们的目标:SA1
MAGE-A4激活RAD18的结构基础。 SA2定义了病理学的贡献
活体内的致癌胁迫耐受性和致癌作用的激活的转换合成(TLS)。
SA3定义了新机制,通过该机制,通过该机制通过病理(HR)通过病理激活
癌症中的Hormad1。 SA1将使用生物物理方法和新的肽探针来阐明机制
Mage-A4与Rad18相互作用。在缺乏RAD18(TLS的顶端介体)的SA2突变小鼠中
过表达MAGE-A4的小鼠(TLS的癌症特异性激活剂)将用于确定TLS如何影响
肿瘤发生和体内致癌基因驱动的癌症的基因组景观。对于SA3,我们将使用单元格
培养模型以确定癌症/睾丸如何使用抗原hormad1(在
癌细胞)信号激活DSB修复,致癌胁迫耐受性和放射线抗性。我们建议
创新的新解决方案对于如何出现致癌胁迫的耐受性和可突变性的重要问题,
驱动致癌,并导致抗治疗性。拟议的工作很重要,因为我们将提供
基因组维持的新范例与环境暴露,诱变,
人类的肿瘤发生和癌症治疗。这项工作将导致针对的新型治疗策略
DNA损伤耐受性在癌细胞中,从而提高了现有的功效和选择性
抗癌代理商。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Hugh Pearce其他文献
Kenneth Hugh Pearce的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Hugh Pearce', 18)}}的其他基金
Discovery of allosteric activators of phospholipase C-gamma2 to treat Alzheimer's disease
发现用于治疗阿尔茨海默病的磷脂酶 C-gamma2 变构激活剂
- 批准号:
10901007 - 财政年份:2023
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10185322 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10399533 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
A high-throughput platform to identify selective allosteric inhibitors of the PLC-y isozymes
用于鉴定 PLC-y 同工酶选择性变构抑制剂的高通量平台
- 批准号:
10598548 - 财政年份:2021
- 资助金额:
$ 46.33万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10530649 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10132267 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10596489 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
10363652 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Establishing MAGE-A4/RAD18 as a novel cancer-specific chemotherapeutic target
将 MAGE-A4/RAD18 确立为新型癌症特异性化疗靶点
- 批准号:
9905492 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
相似国自然基金
非均质结构堰塞坝漫顶溃决机理及溃坝模型研究
- 批准号:42307196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
综采放顶煤围岩-支架位姿-放煤性能调控映射规律研究
- 批准号:52374207
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
切顶沿空留巷三维漏风流场特性及风幕墙柔性封控机理研究
- 批准号:52304246
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高应力坚硬顶板切顶留巷底鼓机理及控制
- 批准号:52374075
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轴流风扇气动声源近场范围内的叶顶声衬降噪机理研究
- 批准号:52375108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Effect of Shiga toxin, OMVs, and innate immune cells on epithelial integrity of human colonoids during EHEC infection
志贺毒素、OMV 和先天免疫细胞对肠出血性大肠杆菌感染期间人结肠上皮完整性的影响
- 批准号:
9978339 - 财政年份:2020
- 资助金额:
$ 46.33万 - 项目类别:
Effect of Shiga toxin, OMVs, and innate immune cells on epithelial integrity of human colonoids during EHEC infection
志贺毒素、OMV 和先天免疫细胞对肠出血性大肠杆菌感染期间人结肠上皮完整性的影响
- 批准号:
10112822 - 财政年份:2020
- 资助金额:
$ 46.33万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10530649 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Pathological Reprogramming of DNA Damage Signaling in Neoplastic Cells
肿瘤细胞中 DNA 损伤信号的病理重编程
- 批准号:
10062976 - 财政年份:2019
- 资助金额:
$ 46.33万 - 项目类别:
Human Milk Oligosaccharides for Prevention of Alcohol-Associated Liver Disease
母乳低聚糖用于预防酒精相关性肝病
- 批准号:
10266673 - 财政年份:2018
- 资助金额:
$ 46.33万 - 项目类别: