Genome-based diagnostics for mapping, monitoring and management of insecticide resistance in major African malaria vectors
基于基因组的诊断,用于绘制、监测和管理非洲主要疟疾病媒的杀虫剂抗药性
基本信息
- 批准号:10444139
- 负责人:
- 金额:$ 49.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAfricaAfrica South of the SaharaAfricanAnopheles GenusAnopheles gambiaeAwardBiological AssayCRISPR/Cas technologyCessation of lifeChemicalsClustered Regularly Interspaced Short Palindromic RepeatsCollectionCountryCulicidaeDataDevelopmentDiagnosticEconomic DevelopmentEntomologyEpidemiologyEvaluationEvolutionFalciparum MalariaFutureGene FrequencyGeneticGenetic MarkersGenetic ModelsGenetic TransformationGenomeGenomic SegmentGenomic approachGenomicsGoalsHeterogeneityInsecticide ResistanceInsecticidesInterventionKenyaMalariaMapsMarker DiscoveryMethodsModelingMolecularMonitorMorbidity - disease rateOutcomePopulationPredispositionRandomized Controlled TrialsRecommendationResearch Project GrantsResistanceResistance developmentResourcesSiteSpeedSurveillance ProgramTechnologyTestingTreatment EfficacyUgandaVariantWorkbasebiomarker identificationbiomarker panelcontrol trialdiagnostic biomarkerepidemiologic datafunctional genomicsgenetic resistancegenetic variantgenome sequencinggenome wide association studygenomic signatureimprovedmalaria infectionmortalitynovelpredictive modelingprogramspublic health relevancepyrethroidresistance mechanismscale upscreeningscreening panelsuccesssugartooltransmission processvectorvector controlwhole genome
项目摘要
Project Summary
Malaria is a major cause of mortality and morbidity in Sub-Saharan Africa (SSA) and one of the biggest
impediments to the economic development. The major method for controlling these malaria-transmitting
mosquitoes is through the use of chemical insecticides but resistance has emerged and is a major threat to the
recent reductions in both deaths and malaria infections.
A major challenge facing malaria control program managers is knowing to what extent insecticide resistance is
impacting control and when to take action eg by switching to a new intervention. In the first cycle of this
award we exploited the advent of population genomic technologies to develop an improved understanding of
the evolution and distribution of insecticide resistance mechanisms. In this proposal we describe how we will
integrate this resistance marker discovery work with new functional genomic approaches and large vector
control trials to demonstrate how genomic surveillance can be used to guide vector control.
We will leverage our work on two large vector control trials in East Africa. In Uganda we embedded a cluster-
randomised control trial (RCT) of long-lasting insecticidal nets (LLINs) with, and without, the synergist PBO
into a countrywide distribution campaign. In Kenya together with KEMRI we are conducting an RCT of novel
intervention, Attractive Targeted Sugar Baits. We will use whole genome sequencing of the three major
malaria vectors Anopheles gambiae, An. funestus and An. arabiensis from these trial sites to identify genomic
regions that are associated with insecticide resistance. We will then develop two contrasting models of the
genetics of resistance. The first that assumes that we can accurately describe the likelihood of mosquito being
insecticide resistant to by examining a small number of well characterised markers. This model capitalises on
our recent developments in CRISPR/Cas9 transformation of Anopheles. The second model uses a polygenic
score approach that requires a far larger number of markers, significantly-associated with resistance, but with
no need for an understanding of causal mechanisms.
By screening mosquito collections from the clusters within the RCTs and by, re-analysing the epidemiological
data with the inclusion of the two resistance models, we will quantify the impact of resistance on the
intervention efficacy. We will test whether the model based on a small number of genetic variants has
sufficient predictive power for resistance monitoring or whether a larger number of loci provides superior
predictive power. The former would aid widespread adoption of genetic surveillance of programmes. Finally
through two modelling approaches we will 1. deliver predictions of molecularly-defined resistance at the
administrative unit level in East Africa and 2. integrate these resistance data into transmission models of
falciparum malaria to inform decisions on what is the optimal type of vector control to deploy.
项目摘要
疟疾是撒哈拉以南非洲(SSA)死亡率和发病率的主要原因,也是最大的原因之一
障碍经济发展。控制这些疟疾传播的主要方法
蚊子是通过使用化学杀虫剂的,但已经出现了抗药性,对
死亡和疟疾感染的最新减少。
疟疾控制计划经理面临的一个重大挑战是知道杀虫剂的耐药性在多大程度上是
影响控制以及何时采取行动,例如切换到新的干预措施。在第一个周期中
奖项我们利用了人口基因组技术的出现,以提高对
杀虫剂耐药机制的进化和分布。在此提案中,我们描述了我们将如何
将这种阻力标记发现工作与新功能基因组方法和大型矢量相结合
控制试验以证明如何使用基因组监测来指导载体控制。
我们将在东非的两项大型矢量控制试验中利用我们的工作。在乌干达,我们嵌入了一个集群 -
持久的杀虫网(LLIN)的随机对照试验(RCT),并没有协同作用PBO
进入全国分销活动。在肯尼亚,我们与Kemri一起进行了新颖的RCT
干预,有吸引力的靶向糖诱饵。我们将使用三个主要的整个基因组测序
疟疾矢量冈比亚河流,an。 Funestus和An。来自这些试验地点的阿拉伯语以鉴定基因组
与杀虫剂耐药性相关的区域。然后,我们将开发两个对比的模型
抵抗的遗传学。第一个假设我们可以准确地描述蚊子的可能性
通过检查少数特征性良好的标记来抗杀虫剂。该模型大写
我们最近在CRISPR/CAS9转换atopheles方面的发展。第二个模型使用多基因
得分方法需要大得多的标记,与电阻相关,但与
无需了解因果机制。
通过从RCT内的簇中筛选蚊子收集,然后重新分析流行病学
包括两个电阻模型的数据,我们将量化电阻对
干预功效。我们将测试基于少数遗传变异的模型是否具有
抵抗监测的足够预测能力,或者是否有更多基因座提供优越性
预测能力。前者将有助于广泛采用计划的遗传监测。最后
通过两种建模方法,我们将1。
东非的行政单位级别和2。将这些阻力数据集成到传输模型中
恶性疟疾以告知有关部署矢量控制最佳类型的决定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin James Donnelly其他文献
Martin James Donnelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin James Donnelly', 18)}}的其他基金
New advances in insecticide resistance genomics: using Machine Learning to predict resistance phenotype from large-scale genomic data.
杀虫剂抗性基因组学的新进展:利用机器学习从大规模基因组数据中预测抗性表型。
- 批准号:
MR/T001070/1 - 财政年份:2019
- 资助金额:
$ 49.68万 - 项目类别:
Research Grant
Using spatial statistics and genomics to develop epidemiologically relevant definitions of insecticide resistance in African Malaria Vectors
利用空间统计和基因组学制定非洲疟疾媒介中杀虫剂抗药性的流行病学相关定义
- 批准号:
MR/P02520X/1 - 财政年份:2017
- 资助金额:
$ 49.68万 - 项目类别:
Research Grant
Genome-based diagnostics for monitoring and evaluation of insecticide resistance in Anopheles gambiae
基于基因组的诊断用于监测和评估冈比亚按蚊杀虫剂抗药性
- 批准号:
9221234 - 财政年份:2016
- 资助金额:
$ 49.68万 - 项目类别:
Genome-based diagnostics for mapping, monitoring and management of insecticide resistance in major African malaria vectors
基于基因组的诊断,用于绘制、监测和管理非洲主要疟疾病媒的杀虫剂抗药性
- 批准号:
10631175 - 财政年份:2016
- 资助金额:
$ 49.68万 - 项目类别:
Genome-based diagnostics for monitoring and evaluation of insecticide resistance in Anopheles gambiae
基于基因组的诊断用于监测和评估冈比亚按蚊杀虫剂抗药性
- 批准号:
9029400 - 财政年份:2016
- 资助金额:
$ 49.68万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
8462498 - 财政年份:2009
- 资助金额:
$ 49.68万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
8061987 - 财政年份:2009
- 资助金额:
$ 49.68万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
8259687 - 财政年份:2009
- 资助金额:
$ 49.68万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
7798130 - 财政年份:2009
- 资助金额:
$ 49.68万 - 项目类别:
Development of a Field Applicable Screening Tool (FAST) kit for detecting resista
开发用于检测耐药性的现场适用筛选工具 (FAST) 套件
- 批准号:
7657009 - 财政年份:2009
- 资助金额:
$ 49.68万 - 项目类别:
相似国自然基金
非洲猪瘟病毒关键抗原表位筛选和功能验证
- 批准号:32302858
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲猪瘟病毒pS273R通过切割G3BP1调控宿主应激颗粒形成的机制
- 批准号:32302893
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲猪瘟病毒B475L蛋白靶向LMP2抑制抗原递呈的分子机制
- 批准号:32302894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于非洲猪瘟病毒pS273R蛋白泛素-蛋白酶体降解途径阻抑机制理性设计其特异性蛋白水解靶向嵌合体的研究
- 批准号:32373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自噬在呋虫胺致非洲爪蟾脂质代谢紊乱中的调控机制研究
- 批准号:42307363
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A new method for active tuberculosis case finding
活动性结核病病例发现的新方法
- 批准号:
10665861 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别:
Reflectance confocal microscopy-optical coherence tomography (RCM-OCT) imaging of oral lesions: Toward an affordable device and approach for developing countries
口腔病变的反射共焦显微镜-光学相干断层扫描 (RCM-OCT) 成像:为发展中国家提供负担得起的设备和方法
- 批准号:
10735695 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别:
Screening strategies for sexually transmitted infections in a high HIV incidence setting in South Africa
南非艾滋病毒高发地区的性传播感染筛查策略
- 批准号:
10761853 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别:
Support for Vector Biology Training for Sustainable Control of Vector Borne diseases in East Africa
支持媒介生物学培训以可持续控制东非媒介传播疾病
- 批准号:
10675897 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别:
Adapting and Piloting an Evidence-based Intervention to Improve Hypertension Care among Tanzanians Living with HIV
调整和试点循证干预措施以改善坦桑尼亚艾滋病毒感染者的高血压护理
- 批准号:
10750666 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别: