Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
基本信息
- 批准号:10443630
- 负责人:
- 金额:$ 69.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAmericanBayesian ModelingBayesian PredictionBinding ProteinsBiochemicalCharacteristicsClassificationClinVarClinicalClinical DataClinical assessmentsCodeComplementControl GroupsCouplingCrystallizationDataDatabasesDaughterDevelopmentDiseaseEpidemiologyEtiologyEvaluationFamilyFathersGenesGeneticGenomicsHypertrophic CardiomyopathyIndividualKnowledgeLaboratoriesMalignant NeoplasmsMeasuresMedicalMedical GeneticsMethodsModelingMolecular ConformationMutationParticipantPathogenicityPatientsPatternPenetrancePerformancePhenotypePopulationPositioning AttributePredispositionProtein RegionProteinsRecurrenceRiskRoleScreening procedureSingle Nucleotide PolymorphismSiteStructureSyndromeTrainingTrans-Omics for Precision MedicineVariantVeteransbiobankclinical applicationclinical diagnosticsclinical riskclinically actionablecohortexhaustiongenetic pedigreegenetic varianthealth dataimprovedinsightmedical schoolsnovelpopulation healthprospectiveprotein structuresegregationstandard of carevariant of unknown significance
项目摘要
Integrated pathogenicity assessment of clinically actionable genetic variants
!
Project Summary/Abstract
Large biobanks such as All of Us and the Million Veteran Project have now collected genetic data from
millions of patients, and other population health studies are expanding rapidly. The interpretation of variants in
clinically actionable disease genes is becoming increasingly common in such projects. The American College
of Medical Genetics and Genomics has recommended that sequence interpretation include a minimum set of
59 genes regardless of the indication for sequencing (ACMG 59). These genes are responsible for a variety of
clinical syndromes and have been extensively studied. However, even in well-studied disease genes, the
majority of variants are only observed in one or two families. which makes it challenging to be sure of their role
in causation of disease. Further, while there may be existing evidence about a variant, it is often inadequate for
interpretation, as many variants in databases were originally identified in small, symptomatic cohorts without
matched control groups, so their associations can suffer from incorrect estimates of significance or effect size,
and a non-trivial fraction are likely to be spurious.
For these reasons, a central challenge in clinical genomics is to interpret variants in clinically actionable
genes that are identified during sequencing. Because the ACMG 59 genes have been studied intensively due
to their clinical applicability, there is a unique abundance of functional and structural data that can be used to
improve predictions. Here, we propose to develop new data that can be leveraged in the clinical assessment of
variants including novel predictions of structural consequences, regional and structurally-informed selective
constraint, and clinical risk from clinical diagnostic and epidemiologic health data. Using these data, we will
develop a Bayesian statistical model to predict the effects of mutations that can complement existing
assessments made by consortia and clinical laboratories.
This will specifically include efforts to intensively improve computational predictions of structural and
functional impact using the extensive scientific and medical knowledge in each of these genes. Next, we
combine that structural and functional insight with large-scale population data. We will measure statistical
aberration of variation for related groups of missense variants, and also identify groups of variant sites which
are enriched in recurrent somatic or germline variation associated with cancer. Finally, we will develop a
Bayesian prediction framework that integrates the full set of variant observations and characteristics to improve
predictions of clinical risk for individual variants, and prospectively measure its performance in a clinical
diagnostic laboratory. !
!
临床可行的遗传变异的综合致病性评估
呢
项目摘要/摘要
我们所有人和百万退伍军人项目等大型生物库现已从
数以百万计的患者和其他人口健康研究正在迅速扩大。对变体的解释
临床上可行的疾病基因在此类项目中变得越来越普遍。美国学院
医学遗传学和基因组学已建议序列解释包括一组最小
59个基因,无论测序的指示如何(ACMG 59)。这些基因负责各种
临床综合征,已经进行了广泛的研究。但是,即使在研究良好的疾病基因中,
仅在一个或两个家庭中观察到大多数变体。这使得确保自己的角色具有挑战性
在疾病因果关系中。此外,虽然可能有关于变体的现有证据,但通常不足
解释,因为数据库中的许多变体最初都是在小的,有症状的同类中鉴定的
匹配的对照组,因此他们的关联可能会遭受意义或影响大小的不正确估计,
而且非平凡的部分可能是虚假的。
由于这些原因,临床基因组学中的核心挑战是解释临床可行的变体
在测序过程中鉴定出的基因。因为已深入研究了ACMG 59个基因
对于它们的临床适用性,有独特的功能和结构数据可用于
改善预测。在这里,我们建议开发可以在临床评估中利用的新数据
变体包括对结构后果,区域和结构信息的新预测的变体
临床诊断和流行病学健康数据的约束和临床风险。使用这些数据,我们将
开发一个贝叶斯统计模型,以预测突变的影响,以补充现有的
财团和临床实验室的评估。
这将特别包括在结构和
使用这些基因中的广泛科学和医学知识的功能影响。接下来,我们
将该结构和功能性洞察力与大规模人口数据相结合。我们将衡量统计
相关的错义变体的变异差,还确定了变体站点组的差异
富含与癌症相关的复发体或种系变异。最后,我们将发展一个
贝叶斯预测框架,集成了完整的变体观测和特征以改进
预测单个变体的临床风险,并前瞻性地衡量其在临床上的表现
诊断实验室。呢
呢
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating clinical risk in gene regions from population sequencing cohort data.
根据群体测序队列数据估计基因区域的临床风险。
- DOI:10.1101/2023.01.06.23284281
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fife,JamesD;Cassa,ChristopherA
- 通讯作者:Cassa,ChristopherA
Data sharing to improve concordance in variant interpretation across laboratories: results from the Canadian Open Genetics Repository.
- DOI:10.1136/jmedgenet-2021-107738
- 发表时间:2022-06
- 期刊:
- 影响因子:4
- 作者:Mighton C;Smith AC;Mayers J;Tomaszewski R;Taylor S;Hume S;Agatep R;Spriggs E;Feilotter HE;Semenuk L;Wong H;Lazo de la Vega L;Marshall CR;Axford MM;Silver T;Charames GS;Di Gioacchino V;Watkins N;Foulkes WD;Clavier M;Hamel N;Chong G;Lamont RE;Parboosingh J;Karsan A;Bosdet I;Young SS;Tucker T;Akbari MR;Speevak MD;Vaags AK;Lebo MS;Lerner-Ellis J;Canadian Open Genetics Repository Working Group
- 通讯作者:Canadian Open Genetics Repository Working Group
Reply to 'Selective effects of heterozygous protein-truncating variants'.
回复“杂合蛋白质截短变体的选择性效应”。
- DOI:10.1038/s41588-018-0301-y
- 发表时间:2019
- 期刊:
- 影响因子:30.8
- 作者:Cassa,ChristopherA;Weghorn,Donate;Balick,DanielJ;Jordan,DanielM;Nusinow,David;Samocha,KaitlinE;O'Donnell-Luria,Anne;MacArthur,DanielG;Daly,MarkJ;Beier,DavidR;Sunyaev,ShamilR
- 通讯作者:Sunyaev,ShamilR
Revisiting mutagenesis at non-B DNA motifs in the human genome.
- DOI:10.1038/s41594-023-00936-6
- 发表时间:2023-04
- 期刊:
- 影响因子:16.8
- 作者:McGinty, R. J.;Sunyaev, S. R.
- 通讯作者:Sunyaev, S. R.
DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features.
- DOI:10.1038/s41467-023-37661-z
- 发表时间:2023-04-19
- 期刊:
- 影响因子:16.6
- 作者:Luppino, Federica;Adzhubei, Ivan A.;Cassa, Christopher A.;Toth-Petroczy, Agnes
- 通讯作者:Toth-Petroczy, Agnes
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Cassa其他文献
Christopher Cassa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Cassa', 18)}}的其他基金
Integrative computational-experimental approaches to stratify monogenic disease risk
综合计算实验方法对单基因疾病风险进行分层
- 批准号:
10889297 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Urgent Supplement: Correcting genetic disorders using predictable CRISPR/Cas9-induced exon skipping
紧急补充:利用可预测的 CRISPR/Cas9 诱导的外显子跳跃来纠正遗传疾病
- 批准号:
10163567 - 财政年份:2020
- 资助金额:
$ 69.24万 - 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
- 批准号:
10213798 - 财政年份:2018
- 资助金额:
$ 69.24万 - 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
- 批准号:
9976565 - 财政年份:2018
- 资助金额:
$ 69.24万 - 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
- 批准号:
9789922 - 财政年份:2018
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
8692560 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
9113670 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
8487872 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
9309017 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
- 批准号:
10597840 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
- 批准号:
10659007 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别: