Mechanisms of cellular, synaptic and circuit dysfunction in Kcnc1-related epileptic encephalopathy
Kcnc1相关癫痫性脑病的细胞、突触和回路功能障碍的机制
基本信息
- 批准号:10424981
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAddressAtaxiaAxonBehaviorBehavioralCalciumCellsCerebral cortexCharacteristicsComplexDendritesDiseaseElectrophysiology (science)EpilepsyEventExhibitsFellowshipFrequenciesFunctional disorderGenerationsGenesGoalsImageImpaired cognitionImpairmentIn VitroIndividualIntellectual functioning disabilityInterneuronsIon ChannelKnowledgeLeadLightLinkMeasuresMediatingMentorsMethodologyMusNational Research Service AwardsNeurodevelopmental DisorderNeurologicNeuronsNeurosciencesOpticsOther GeneticsParvalbuminsPathogenesisPathogenicityPatientsPhenotypePhysiologicalPhysiologyPotassiumPotassium ChannelPresynaptic TerminalsProgressive Myoclonic EpilepsiesPropertyRecoveryRecurrenceResearchResearch PersonnelRoleSeizuresSensorySodium ChannelSymptomsSynapsesSynaptic TransmissionTechnical ExpertiseTechniquesTestingTrainingVariantVibrissaeVoltage-Gated Potassium ChannelWild Type Mouseawakebasebiophysical propertiescalcium indicatorcareerdensityearly onsetepileptic encephalopathiesexcitatory neuronexperimental studyhippocampal pyramidal neuronin vivoinsightloss of functionmouse modelmutantnervous system disorderneural circuitneuronal cell bodyneuronal circuitryneuronal excitabilityneurotransmissionnovelpatch clampresponsesynaptic inhibitiontherapy developmenttwo-photonvoltage
项目摘要
PROJECT SUMMARY
I am applying for this NRSA postdoctoral fellowship with the long-term career goal of becoming an
independent investigator capable of leading a highly productive research lab in the field of neuroscience. Under
the guidance of Dr. Ethan Goldberg and Dr. Doug Coulter, this mentored fellowship will provide me the
conceptual and hands-on training required to achieve my goal and thrive in the scientific enterprise.
Pathogenic variants in the gene KCNC1, which encodes the voltage-gated potassium channel subunit
Kv3.1, lead to severe neurological disease including epilepsy. While most patient-derived variants are loss-of-
function, the precise mechanisms by which impaired Kv3.1 function alters individual neuron physiology and
neural circuit function to result in spontaneous seizures are unclear. Kv3.1 is prominently expressed in
parvalbumin-positive fast-spiking inhibitory interneurons (PV-IN) in various subcellular regions including the
dendrites, soma, axon, and synaptic terminal where it critically contributes to reliable high-frequency action
potential generation and propagation. Because PV-INs critically contribute to network dynamics and constrain
excitability of nearby excitatory pyramidal neurons in cortical circuits, we hypothesize that Kv3.1 dysfunction
impairs PV-IN high-frequency action potential generation and propagation, disinhibits pyramidal neurons, and
contributes to aberrant network excitability to drive abnormal behavior and seizures. Therefore, the overarching
objective of this study is to determine the effect of mutant Kv3.1 on PV-IN physiology as a potential major
contributor to pathogenesis of KCNC1-related epilepsy. In aim 1, I will collect patch-clamp electrophysiology
recordings of somatic and axonal potassium channel function and neuronal excitability in PV-INs from a novel
mouse model of KCNC1 epilepsy which harbors the epileptic encephalopathy patient-derived p.A421V variant.
Given the substantially reduced channel activity observed in the p.A421V variant, and that Kv3 currents are
necessary for fast-spiking physiology, I anticipate that PV-INs from the mouse model of KCNC1 epileptic
encephalopathy will exhibit impaired action potential generation at the soma, and unreliable propagation through
the axon. In aim 2, I will interrogate deficits in inhibitory synaptic transmission in response to mutant Kv3.1
expression using multiple (6-8) simultaneous recordings of synaptically-connected PV-INs and pyramidal
neurons in cortical microcircuits. Lastly, in aim 3 I will corroborate my in vitro findings in the in vivo context
through calcium-imaging of neuronal activity in awake, behaving mice. To relate neuronal activity to relevant
behavior, I will examine the excitability of both cortical pyramidal neurons and PV-INs in response to sensory
stimulation by whisker deflection and test the hypothesis that altered Kv3.1 function in PV-INs compromises
network inhibition in vivo. Overall, completion of the aims described in this mentored fellowship will provide
significant insight into the mechanisms of epilepsy in KCNC1-related disorders and deeper understanding of the
contribution of Kv3 channels to PV-IN physiology in general.
项目摘要
我正在申请这个NRSA博士后奖学金,其长期职业目标是成为
能够在神经科学领域领导高产研究实验室的独立研究者。在下面
Ethan Goldberg博士和Doug Coulter博士的指导,这项指导的奖学金将为我提供
在科学企业中实现我的目标并蓬勃发展需要概念和动手培训。
基因KCNC1中的致病变异,该变异编码电压门控通道亚基
Kv3.1,导致包括癫痫在内的严重神经系统疾病。虽然大多数患者衍生的变体是 -
功能,损害KV3.1功能的确切机制改变了单个神经元的生理和
导致自发癫痫发作的神经回路功能尚不清楚。 Kv3.1在
白蛋白阳性阳性快速加快抑制性中间神经元(PV-in),包括各种亚细胞区域
树突,躯体,轴突和突触终端,在其中有助于可靠的高频动作
潜在的产生和传播。因为PV-INS严重有助于网络动态并约束
在皮质回路中附近的兴奋性锥体神经元的兴奋性,我们假设KV3.1功能障碍
损害PV-IN高频动作电势产生和繁殖,Disbib抑制了金字塔神经元,并且
有助于促进异常行为和癫痫发作的异常网络兴奋性。因此,总体
这项研究的目的是确定突变体Kv3.1对PV-IN生理学的影响
KCNC1相关癫痫发病机理的贡献者。在AIM 1中,我将收集贴片钳电生理学
新颖的PV-IN中的体细胞和轴突钾通道功能和神经元兴奋性的记录
KCNC1癫痫的小鼠模型,该模型具有癫痫性脑病患者衍生的P.A421V变体。
鉴于在P.A421V变体中观察到的通道活性大大降低,并且KV3电流是
对于快速加速生理学所需的必要
脑病将在SOMA表现出动作潜在产生受损,并通过
轴突。在AIM 2中,我将响应突变体KV3.1询问抑制性突触传播的缺陷。
使用多个(6-8)同时记录突触连接的PV-INS和锥体的表达
皮质微电路中的神经元。最后,在AIM 3中,我将在体内的情况下证实我的体外发现
通过钙的钙成像在清醒中,行为小鼠。将神经元活性与相关性联系起来
行为,我将检查响应感觉的皮质金字塔神经元和PV-IN的兴奋性
晶须挠度刺激并测试了PV-INS妥协中KV3.1功能改变功能的假设
网络抑制体内。总体而言,该指导奖学金中描述的目标的完成将提供
对KCNC1相关性疾病中癫痫机制的重要洞察力,并更深入地了解
一般而言,KV3通道对PV-IN生理学的贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Ryan Wengert其他文献
Eric Ryan Wengert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Ryan Wengert', 18)}}的其他基金
Mechanisms of cellular, synaptic and circuit dysfunction in Kcnc1-related epileptic encephalopathy
Kcnc1相关癫痫性脑病的细胞、突触和回路功能障碍的机制
- 批准号:
10640847 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Depolarization block of inhibitory neurons impacts neuronal function in epileptic encephalopathy
抑制性神经元的去极化阻滞影响癫痫性脑病的神经元功能
- 批准号:
10020197 - 财政年份:2019
- 资助金额:
$ 6.72万 - 项目类别:
Depolarization block of inhibitory neurons impacts neuronal function in epileptic encephalopathy
抑制性神经元的去极化阻滞影响癫痫性脑病的神经元功能
- 批准号:
9911626 - 财政年份:2019
- 资助金额:
$ 6.72万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of dimer formation in modulating neuronal sodium channel properties
二聚体形成在调节神经元钠通道特性中的作用
- 批准号:
10741033 - 财政年份:2023
- 资助金额:
$ 6.72万 - 项目类别:
Mechanisms of cellular, synaptic and circuit dysfunction in Kcnc1-related epileptic encephalopathy
Kcnc1相关癫痫性脑病的细胞、突触和回路功能障碍的机制
- 批准号:
10640847 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
Direct single-molecule observation ofregulated SNARE assembly
调节 SNARE 组装的直接单分子观察
- 批准号:
9256820 - 财政年份:2017
- 资助金额:
$ 6.72万 - 项目类别:
Calmodulin regulation of Na+ channels in neurons and cardiomyocytes
钙调蛋白对神经元和心肌细胞Na通道的调节
- 批准号:
8965516 - 财政年份:2014
- 资助金额:
$ 6.72万 - 项目类别:
Structural studies of NaV1.5 and functional implications
NaV1.5 的结构研究和功能意义
- 批准号:
8685317 - 财政年份:2013
- 资助金额:
$ 6.72万 - 项目类别: