Unmasking mechanisms of lipolytic dynamics in adipose tissue using high-resolution microfluidic sampling
使用高分辨率微流体采样揭示脂肪组织中脂肪分解动力学的机制
基本信息
- 批准号:10298595
- 负责人:
- 金额:$ 50.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-08 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adenylate CyclaseAdipocytesAdipose tissueAlzheimer&aposs DiseaseAutomobile DrivingBiochemistryBiologicalBiological AssayBiologyBiosensing TechniquesBypassCellsChronicComplexCouplingCustomCyclic AMPCyclic AMP-Dependent Protein KinasesDevelopmentDevicesDiabetes MellitusDiseaseElectrodesEndocrineEndocrine GlandsEndocrine systemFatty AcidsFatty acid glycerol estersFluorescenceFundingGap JunctionsGlycerolGoalsHealthHormonesHourHumanHydrolaseHydrolysisImageImmunityIncidenceInsulinInterventionLeadLigandsLinkLipaseLipolysisMetabolismMethodologyMethodsMicrofluidicsMissionNational Institute of Diabetes and Digestive and Kidney DiseasesNatureNutrientObesityOutputOverweightPathway interactionsPharmacologyPhosphorylationPhysiologyPopulationProtein DynamicsProteinsResearchResolutionRoleS PhaseSamplingSignal PathwaySignal TransductionSodium ChlorideSystemTechniquesTissue ExpansionTissuesTriglyceridesTubeWaterWorkadipokinesanalogbasebody systemdesigndietarydigitaldrug discoveryexperimental studyimprovedin vitro Modelin vivoinnovationinsightinsulin signalingisletlensnovelnutritionperilipinprotein protein interactionprotein transportresponsesensortemporal measurementtooltool developmentuptake
项目摘要
While adipose tissue (fat) was traditionally considered important only for energy storage, it is now recognized
to be a complex, multicellular, endocrine organ with profound systemic effects, altering function in nearly all
other organ systems. Despite its importance, there is a lack of information on the dynamic nature of lipolysis,
adipokine secretion, and nutrient uptake, highlighting several unmet needs in methodology. Few techniques
exist to interrogate small amounts of adipose tissue, and our understanding of dynamic function in adipose
tissue is particularly limited, perhaps due to the belated perspective on its endocrine nature and the added
culture and sampling challenges from cell buoyancy. It is clear that better, adipose-customized tools are
needed for this purpose. As shown in our previous two funding periods, we propose that our microfluidic
systems are ideal to meet these ongoing needs, permitting dynamic interrogation of tissue in ways not possible
with standard techniques. Our long-term goal is to use expert insights in endocrine biology (Granneman, Judd)
to drive the development of customized bioanalytical tools (Easley) and in vitro models of the endocrine system
for applications in nutrition, metabolism, and drug discovery. Our short-term objective is to refine and further
develop microfluidic and biosensing methods to answer pressing questions, e.g. lipolytic dynamics via the
ABHD5/PLIN1 interaction pathway, questions that cannot be answered with current methods. The premise is
that unmatched temporal resolution of our droplet-based microfluidic systems provide unique lenses into
lipolytic efflux and protein dynamics. We expect these first-of-their-kind results on adipose function to better
inform human physiology. Thus, the proposal is innovative in its technological and its biological approaches.
Aim 1 of this proposal will multiplex quantification of both glycerol and non-esterified fatty acids (NEFA) from
adipose tissue at high temporal resolution (<5 sec), achieved by integrating droplet-based microfluidic analog-
to-digital circuits (µADC) with salt-water electrode mergers. In Aim 2, we will customize bioanalytical tools for
adipose tissue signaling pathways. µADC devices will quantify secretions at high resolution under ABHD5
ligand treatment. Mix-and-read fluorescence assays will be customized for rapid (off-chip) quantification of
PLIN1 and HSL phosphorylation, and for cAMP levels. Aim 3 will focus on using these novel tools for
mechanistic analysis of substrate and protein efflux in white adipocytes. High-resolution microfluidics, used
with genetically-encoded fluorescent protein sensors, will correlate protein trafficking and interactions with
secretory output. Improved microfluidic digital-to-analog circuits (µDAC) will also be designed for rapid tissue
stimulation during imaging. The rationale for this research is that custom tool development will provide novel
information on adipose tissue dynamics, and we have already uncovered significant, previously unknown
dynamic function in the tissue. Further study should lead to improvements in human dietary or pharmacological
interventions. The proposal is thus innovative in its technological and its biological approaches.
虽然传统上认为脂肪组织(脂肪)仅对能量储存很重要,但现在人们认识到它
成为一个复杂的多细胞内分泌器官,具有深远的全身影响,改变几乎所有的功能
尽管脂肪分解很重要,但仍缺乏关于其动态性质的信息,
脂肪因子分泌和营养吸收,突出了方法论中几个未满足的需求。
存在是为了询问少量的脂肪组织,以及我们对脂肪动态功能的理解
组织特别有限,可能是由于对其内分泌性质的迟来认识以及附加的
细胞浮力带来的培养和采样挑战显然需要更好的脂肪定制工具。
正如我们前两个资助期所示,我们建议我们的微流体。
系统是满足这些持续需求的理想选择,允许以不可能的方式动态询问组织
我们的长期目标是利用内分泌生物学方面的专家见解(Granneman,Judd)
推动定制生物分析工具(Easley)和内分泌系统体外模型的开发
我们的短期目标是完善和进一步发展。
开发微流体和生物传感方法来回答紧迫的问题,例如通过
ABHD5/PLIN1相互作用途径,目前方法无法回答的问题前提是。
我们基于液滴的微流体系统无与伦比的时间分辨率为
我们期望这些关于脂肪功能的首创结果能够更好。
因此,该提案在技术和生物学方法上都是创新的。
该提案的目标 1 将多重定量甘油和非酯化脂肪酸 (NEFA)
通过集成基于液滴的微流体模拟来实现高时间分辨率(<5秒)的脂肪组织
在目标 2 中,我们将定制生物分析工具。
µADC 设备将在 ABHD5 下以高分辨率量化脂肪组织信号通路。
混合读取荧光测定将被定制用于快速(芯片外)定量
PLIN1 和 HSL 磷酸化以及 cAMP 水平的目标 3 将重点关注使用这些新颖的工具。
使用高分辨率微流体对白色脂肪细胞中的底物和蛋白质流出进行机械分析。
与基因编码的荧光蛋白传感器一起,将蛋白质运输和相互作用与
改进的微流体数模电路(μDAC)也将被设计用于组织快速。
这项研究的基本原理是定制工具开发将提供新颖的功能。
关于脂肪组织动力学的信息,我们已经发现了重要的、以前未知的
组织的动态功能应该会导致人类饮食或药理学的改善。
因此,该提案在技术和生物学方法上具有创新性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher J Easley其他文献
Christopher J Easley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher J Easley', 18)}}的其他基金
A nucleic acid nanostructure built through on-electrode ligation for electrochemical detection of proteins, peptides, and small molecules
通过电极上连接构建的核酸纳米结构,用于蛋白质、肽和小分子的电化学检测
- 批准号:
10033760 - 财政年份:2020
- 资助金额:
$ 50.59万 - 项目类别:
A nucleic acid nanostructure built through on-electrode ligation for electrochemical detection of proteins, peptides, and small molecules
通过电极上连接构建的核酸纳米结构,用于蛋白质、肽和小分子的电化学检测
- 批准号:
10458097 - 财政年份:2020
- 资助金额:
$ 50.59万 - 项目类别:
A nucleic acid nanostructure built through on-electrode ligation for electrochemical detection of proteins, peptides, and small molecules
通过电极上连接构建的核酸纳米结构,用于蛋白质、肽和小分子的电化学检测
- 批准号:
10671646 - 财政年份:2020
- 资助金额:
$ 50.59万 - 项目类别:
A nucleic acid nanostructure built through on-electrode ligation for electrochemical detection of proteins, peptides, and small molecules
通过电极上连接构建的核酸纳米结构,用于蛋白质、肽和小分子的电化学检测
- 批准号:
10266079 - 财政年份:2020
- 资助金额:
$ 50.59万 - 项目类别:
Interrogating Dynamics of Acute Secretion of Adiponectin Multimers from Adipose T
探究脂肪 T 中脂联素多聚体急性分泌的动力学
- 批准号:
8371557 - 财政年份:2012
- 资助金额:
$ 50.59万 - 项目类别:
Interrogating Dynamics of Acute Secretion of Adiponectin Multimers from Adipose T
探究脂肪 T 中脂联素多聚体急性分泌的动力学
- 批准号:
8485601 - 财政年份:2012
- 资助金额:
$ 50.59万 - 项目类别:
Unmasking mechanisms of lipolytic dynamics in adipose tissue using high-resolution microfluidic sampling
使用高分辨率微流体采样揭示脂肪组织中脂肪分解动力学的机制
- 批准号:
10442627 - 财政年份:2012
- 资助金额:
$ 50.59万 - 项目类别:
Interrogating Dynamics of Acute Secretion of Adiponectin Multimers from Adipose T
探究脂肪 T 中脂联素多聚体急性分泌的动力学
- 批准号:
8668053 - 财政年份:2012
- 资助金额:
$ 50.59万 - 项目类别:
Mouse-on-a-chip systems to evaluate pancreas-adipose tissue dynamics in vitro
用于体外评估胰腺脂肪组织动力学的小鼠芯片系统
- 批准号:
9228365 - 财政年份:2012
- 资助金额:
$ 50.59万 - 项目类别:
Mouse-on-a-chip systems to evaluate pancreas-adipose tissue dynamics in vitro
用于体外评估胰腺脂肪组织动力学的小鼠芯片系统
- 批准号:
9106540 - 财政年份:2012
- 资助金额:
$ 50.59万 - 项目类别:
相似国自然基金
Acvrl1调控脂肪组织巨噬细胞M1/M2极化改善肥胖的机制研究
- 批准号:82300973
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
巨噬细胞介导脂肪组织重构在塑化剂干扰系统能量代谢中的作用研究
- 批准号:82373625
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
巨噬细胞GP73-CXCL5调节脂肪组织适应性产热的机制研究
- 批准号:32300573
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MYO9B缺失调控脂肪组织巨噬细胞代谢重编程促进肥胖相关胰岛素抵抗的机制研究
- 批准号:82300948
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanism and Function of the Supercomplex KARATE in Insulin Signaling
超级复合物空手道在胰岛素信号传导中的机制和功能
- 批准号:
10444290 - 财政年份:2022
- 资助金额:
$ 50.59万 - 项目类别:
LIFR-alpha/JAK/STAT3-dependent Adipose Inflammation Contributes to Obesity-Associated NAFLD - Resubmissi
LIFR-alpha/JAK/STAT3 依赖性脂肪炎症导致肥胖相关 NAFLD - Resubmissi
- 批准号:
10364225 - 财政年份:2022
- 资助金额:
$ 50.59万 - 项目类别:
LIFR-alpha/JAK/STAT3-dependent Adipose Inflammation Contributes to Obesity-Associated NAFLD - Resubmissi
LIFR-alpha/JAK/STAT3 依赖性脂肪炎症导致肥胖相关 NAFLD - Resubmissi
- 批准号:
10544176 - 财政年份:2022
- 资助金额:
$ 50.59万 - 项目类别:
Mechanism and Function of the Supercomplex KARATE in Insulin Signaling
超级复合物空手道在胰岛素信号传导中的机制和功能
- 批准号:
10601093 - 财政年份:2022
- 资助金额:
$ 50.59万 - 项目类别:
Fatty Acid Signaling via GPCRs in Primary Cilia Controls Adipogenesis and Insulin Secretion, Regulating Obesity and Diabetes
原发纤毛中 GPCR 的脂肪酸信号控制脂肪生成和胰岛素分泌,调节肥胖和糖尿病
- 批准号:
10318656 - 财政年份:2020
- 资助金额:
$ 50.59万 - 项目类别: