Spatial Delivery of MicroRNA Inhibitor via Targeted Polyelectrolyte Complex Micelles to Treat Atherosclerosis.
通过靶向聚电解质复合胶束空间递送 MicroRNA 抑制剂来治疗动脉粥样硬化。
基本信息
- 批准号:10229491
- 负责人:
- 金额:$ 39.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAddressAffectAmericanArterial Fatty StreakArteriesAtherosclerosisAttentionAttenuatedBindingBlood VesselsBlood flowCardiovascular DiseasesCardiovascular systemCholesterolCholesterol HomeostasisCommunitiesComplexDataDiseaseEncapsulatedEndothelial CellsEndotheliumEngineeringEventExcretory functionFibrinFoam CellsFutureGoalsHealthHematological DiseaseHigh Density LipoproteinsIn VitroInflammationInvestigationIschemiaLDL Cholesterol LipoproteinsLesionLipoproteinsLiverMalignant NeoplasmsMedicalMicellesMicroRNAsMolecularMorbidity - disease rateMyocardial InfarctionNaturePeptidesPermeabilityPharmacological TreatmentProcessRegulator GenesRisk FactorsSiteStrokeSystemTestingTherapeuticTissuesVascular Cell Adhesion Molecule-1athero susceptiblebasebeta-Chemokineschemokine receptoreffectiveness evaluationgamma-Chemokineshypercholesterolemiain vivoinhibitor/antagonistinnovationmacrophagemonocytemortalitynanomaterialsnanomedicinenanoparticlenanoparticle deliverynovelnovel strategiesnovel therapeutic interventionparticlepreclinical developmentpreventrecruitresearch clinical testingreverse cholesterol transportvascular inflammation
项目摘要
Project Summary
Atherosclerotic vascular disease and downstream tissue ischemia (heart attacks, strokes) remain the
leading cause of morbidity and mortality among Americans. Atherosclerosis (thickening and hardening of vas-
cular walls) develops preferentially at arterial sites of curvature and bifurcation where disturbed blood flow is
prevalent; yet, current pharmacological treatments of atherosclerosis principally target “systemic” risk factors
such as high blood cholesterol. We believe targeted nanomedicine has unique potential to revolutionize future
medical practice of atherosclerosis by correcting disease-causing molecular mechanisms “regionally” in dis-
eased blood vessels.
Arterial wall-based therapy is attractive given the focal nature of atherosclerosis at predictable vascular
sites. Disturbed flow increases endothelial permeability and promotes endothelial inflammation, leading to the
subendothelial retention of low-density lipoprotein (LDL) cholesterol particles and monocytes accumulation.
Lesion monocytes mature into macrophages and internalize lipoproteins. Excess cellular cholesterol effluxed
from macrophages is transported by high density lipoproteins (HDL) to the liver for excretion through a process
known as Reverse Cholesterol Transport (RCT). Inadequate RCT is associated with cholesterol-loaded mac-
rophage “foam cells”. Extensive studies suggest that inhibition of endothelial inflammation and promotion of
macrophage cholesterol efflux are ideal strategies to prevent or regress atherosclerosis. Nevertheless, it re-
mains extremely difficult to modulate these disease-causing molecular mechanisms “spatially” in lesions.
microRNAs (miRNAs) are critical gene regulators of cellular events related to atherosclerosis. Disturbed
flow increases endothelial miR-92a to promote vascular inflammation while elevated miR-33a suppresses cho-
lesterol efflux. The overall goal of this project is to develop a new nanomedicine-based therapeutic strategy
against atherosclerosis, aiming to inhibit endothelial miR-92a and suppress macrophage miR-33a in a lesion-
specific fashion. Our key premise is that this new strategy, if successful, could mitigate the tremendous health
burden of atherosclerosis. Indeed, our preliminary data suggest that this can be done. We have employed tar-
geting peptides against fibrin and Vascular Cell Adhesion Molecule 1 (VCAM-1) to drive active binding of nano-
materials to atherosclerotic lesions and inflamed endothelia, respectively. Moreover, peptides against C-C
chemokine receptor type 2 (CCR2) successfully delivered nanoparticles to lesion monocytes/macrophages.
To address our overall goal, we hold two immediate objectives. First, we will refine and test a novel
polyelectrolyte complex micelle system to deliver miR-92a inhibitor specifically to athero-susceptible endotheli-
um. Second, this polyelectrolyte complex micelle will be reformulated to display peptides against lesion macro-
phages to deliver inhibitors against miR-33a. These studies should further preclinical development, and per-
haps eventual clinical testing, of a new therapeutic strategy to treat atherosclerosis, a still critically important
disease process.
项目摘要
动脉粥样硬化血管疾病和下游组织缺血(心脏病发作,中风)仍然是
美国人发病和死亡的主要原因。动脉粥样硬化(增厚和硬化
克莱尔壁)在曲率和分叉的动脉部位优先发展,在影响血流的情况下
流行;然而,动脉粥样硬化的当前药物治疗主要针对“全身”风险因素
例如高血胆固醇。我们认为,靶向纳米医学具有独特的潜力来革新未来
动脉粥样硬化的医学实践是通过“区域性”纠正引起疾病的分子机制的医学实践
容易的血管。
鉴于动脉粥样硬化在可预测的血管上的焦点,基于动脉壁的治疗具有吸引力
站点。流动干扰会增加内皮渗透性并促进内皮感染,导致
低密度脂蛋白(LDL)胆固醇颗粒和单核细胞积累的下皮下皮保留。
病变单核细胞成熟成巨噬细胞并内化脂蛋白。过量的细胞胆固醇排出
通过高密度脂蛋白(HDL)从巨噬细胞中运输到肝脏以通过一项突出
称为反向胆固醇运输(RCT)。 RCT不足与负载的MAC-
r裂“泡沫细胞”。广泛的研究表明,抑制内皮感染和促进
巨噬细胞胆固醇外排是预防或消退动脉粥样硬化的理想策略。然而,它重新
电源在病变中“空间上”调节这些引起疾病的分子机制极为困难。
microRNA(miRNA)是与动脉粥样硬化有关的细胞事件的关键基因调节剂。不安
流动增加内皮miR-92a以促进血管炎症,而升高的miR-33a抑制了CHO-
Lesterol外排。该项目的总体目标是制定新的基于纳米医学的理论策略
针对动脉粥样硬化,旨在抑制内皮miR-92a并抑制病变中的巨噬细胞miR-33a
特定的时尚。我们的主要前提是,如果成功的话,这种新策略可以减轻巨大的健康
动脉粥样硬化的负担。确实,我们的初步数据表明可以做到这一点。我们已经工作了焦油 -
使肽对纤维蛋白和血管细胞粘附分子1(VCAM-1)驱动纳米的主动结合
分别为动脉粥样硬化病变和发炎的内皮材料。而且,针对C-C的肽
趋化因子受体2型(CCR2)成功地将纳米颗粒传递到病变单核细胞/巨噬细胞。
为了解决我们的整体目标,我们持有两个直接的目标。首先,我们将完善并测试一本小说
聚电解质复合胶束系统,以将miR-92a抑制剂专门传递到可动脉粥样硬化的内皮上
嗯。其次,该聚电解质复合物胶束将被重新制定,以显示针对病变宏观的肽
噬菌体以提供针对miR-33a的抑制剂。这些研究应进一步发展,并
HAPS最终的临床测试是一种治疗动脉粥样硬化的新治疗策略,这仍然非常重要
疾病过程。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polymorphism in peptide self-assembly visualized.
- DOI:10.1073/pnas.2123197119
- 发表时间:2022-02-08
- 期刊:
- 影响因子:11.1
- 作者:Tirrell M
- 通讯作者:Tirrell M
Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins.
- DOI:10.1002/adhm.202102600
- 发表时间:2022-06
- 期刊:
- 影响因子:10
- 作者:Tian, Yu;Tirrell, Matthew, V;LaBelle, James L.
- 通讯作者:LaBelle, James L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yun Fang其他文献
Yun Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yun Fang', 18)}}的其他基金
Precision nanomedicine targeting novel endothelial mechano-sensing mechanisms
针对新型内皮机械传感机制的精密纳米医学
- 批准号:
10630052 - 财政年份:2022
- 资助金额:
$ 39.48万 - 项目类别:
Precision nanomedicine targeting novel endothelial mechano-sensing mechanisms
针对新型内皮机械传感机制的精密纳米医学
- 批准号:
10354607 - 财政年份:2022
- 资助金额:
$ 39.48万 - 项目类别:
Coronary artery disease locus 1p32.2 and miR92a-PPAP2B signaling in endothelial mechanobiology
内皮力学生物学中的冠状动脉疾病基因座 1p32.2 和 miR92a-PPAP2B 信号传导
- 批准号:
10171493 - 财政年份:2017
- 资助金额:
$ 39.48万 - 项目类别:
Coronary artery disease locus 1p32.2 and miR92a-PPAP2B signaling in endothelial mechanobiology
内皮力学生物学中的冠状动脉疾病基因座 1p32.2 和 miR92a-PPAP2B 信号传导
- 批准号:
9539874 - 财政年份:2017
- 资助金额:
$ 39.48万 - 项目类别:
Spatial Delivery of MicroRNA Inhibitor via Targeted Polyelectrolyte Complex Micelles to Treat Atherosclerosis.
通过靶向聚电解质复合胶束空间递送 MicroRNA 抑制剂来治疗动脉粥样硬化。
- 批准号:
10004707 - 财政年份:2017
- 资助金额:
$ 39.48万 - 项目类别:
miR-10a regulation of regional arterial endothelial phenotypes in atherosclerosis
miR-10a对动脉粥样硬化区域动脉内皮表型的调节
- 批准号:
8639625 - 财政年份:2013
- 资助金额:
$ 39.48万 - 项目类别:
miR-10a regulation of regional arterial endothelial phenotypes in atherosclerosis
miR-10a对动脉粥样硬化区域动脉内皮表型的调节
- 批准号:
8653985 - 财政年份:2013
- 资助金额:
$ 39.48万 - 项目类别:
miR-10a regulation of regional arterial endothelial phenotypes in atherosclerosis
miR-10a对动脉粥样硬化区域动脉内皮表型的调节
- 批准号:
8247722 - 财政年份:2011
- 资助金额:
$ 39.48万 - 项目类别:
miR-10a regulation of regional arterial endothelial phenotypes in atherosclerosis
miR-10a对动脉粥样硬化区域动脉内皮表型的调节
- 批准号:
8111489 - 财政年份:2011
- 资助金额:
$ 39.48万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
- 批准号:
10568723 - 财政年份:2023
- 资助金额:
$ 39.48万 - 项目类别:
The role of a pleiotropic drug resistance (PDR) transporter in the cryptococcal-host interactions
多效性耐药(PDR)转运蛋白在隐球菌-宿主相互作用中的作用
- 批准号:
10593492 - 财政年份:2022
- 资助金额:
$ 39.48万 - 项目类别:
Microsomal Transfer Protein Modulates Lipoprotein Metabolism and Retinal lipid Homeostasis
微粒体转移蛋白调节脂蛋白代谢和视网膜脂质稳态
- 批准号:
10372593 - 财政年份:2022
- 资助金额:
$ 39.48万 - 项目类别:
The role of cannabinoids in the regulation of the blood brain barrier in the context of NeuroHIV and anti-retroviral therapy
大麻素在 NeuroHIV 和抗逆转录病毒治疗背景下调节血脑屏障的作用
- 批准号:
10536689 - 财政年份:2021
- 资助金额:
$ 39.48万 - 项目类别: