Mechanisms of T Cell Memory Quiescence
T 细胞记忆静止机制
基本信息
- 批准号:10406747
- 负责人:
- 金额:$ 16.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVACE2Acquired Immunodeficiency SyndromeAddressAdministrative SupplementAntibodiesAntigensAreaAwardB-LymphocytesBacterial InfectionsCD28 geneCOVID-19COVID-19 pandemicCOVID-19 vaccinationCOVID-19 vaccineCTLA4 geneCTLA4-IgCellsCellular ImmunityCenters for Disease Control and Prevention (U.S.)ChildhoodClinicalClinical TrialsCommunicable DiseasesConsensusDevelopmentDisease OutbreaksDrug usageEconomic BurdenEconomicsEndemic DiseasesEngineeringEpidemicEtiologyEvaluationExploratory/Developmental Grant for Diagnostic Cancer ImagingExposure toFDA approvedFoundationsFutureGeneral PopulationGoalsGrowthHealthcareHepatitis C virusHerd ImmunityHumanHumoral ImmunitiesImmuneImmune responseImmunityImmunizationImmunologic MemoryLeadLocationLongevityLungLymphoid TissueMalariaMediatingMemoryMetabolicModelingMolecularNormalcyNucleoproteinsOutcomeParentsPharmaceutical PreparationsPhasePlayPropertyProteinsPublic HealthRecoveryRegulatory T-LymphocyteResearchRestRheumatoid ArthritisRoleSARS-CoV-2 immunitySARS-CoV-2 spike proteinSevere Acute Respiratory SyndromeSignal TransductionSpeedStructural ProteinT memory cellT-LymphocyteTimeTransgenic MiceTravelTuberculosisUnited States National Institutes of HealthVaccinationVaccine DesignVaccinesVaccinia virusViralVirulentVirus DiseasesWorkantigen-specific T cellsantiviral immunitybaseclinical developmentclinical translationdrug repurposingdrug testingexpression vectorfight againstimmunomodulatory strategyinhibitormouse modelmultimodalityneutralizing antibodypandemic diseasepathogenpre-clinicalprogramsprotective efficacyprotein expressionrepositoryresponseservice providerstoolvaccine candidatevaccine platformvaccine-induced immunityvector
项目摘要
ABSTRACT (COVID-19 SUPPLEMENTAL RESEARCH)
During fast-spreading disease outbreaks (such as the present COVID-19 pandemic), quick induction of
herd immunity through vaccination is critical. Currently there are many SARS-CoV2 candidate vaccines in
various stages of clinical development, aimed at inducing robust multimodal protective immunity comprising
both long-lived antibody and memory T cells. However, we have little control over how quickly protective
immunity may be established following immunization. At the very minimum, vaccine-induced T cells require a
period of ~20-30 days of antigenic rest after initial immunization to effectively downregulate their effector
program and convert into quiescent, functionally potent, long-lived memory cells poised at portals of pathogen
entry. If vaccine-induced T cells are re-exposed to antigen during this mandatory rest period – as might occur
in case of exposure to virulent pathogen during an outbreak – the quantity, quality and overall protective
efficacy of immune memory are significantly jeopardized. Hence, shortening the window of immune memory
development is a key goal during vaccination, and is of high significance during pandemics to establish
accelerated protection in frontline healthcare and essential service providers, and speed up herd immunity in
the general population for expedited return to normalcy and economic growth.
In this administrative supplement, we will evaluate candidate immunomodulatory strategies to accelerate and
enhance vaccine-induced protective T cell memory to SARS-CoV2 by facilitating Treg-aided effector-to-
memory conversion. This work is based on our studies establishing a critical role of Tregs in promoting
effector-to-memory conversion through CTLA4, an inhibitory molecule most highly expressed on Tregs
(amongst all immune cells) (Immunity, 2015). Importantly, soluble CTLA4 administered in trans, is alone able
to fully supplement the function of Tregs in memory differentiation, and accelerates the formation of protective
anti-viral immunity by promoting the metabolic switch necessary for effector-to-memory conversion. These
proof-of-concept studies in models of viral immunity (conducted under the aegis of past R21, and parent R01
awards) lay a strong foundation for enhancing SARS-CoV2-specific immune memory following immunization
with candidate SARS-CoV2 vaccine in preclinical murine model. These studies represent a natural
translational extension of the parent R01 focused on mechanistic and molecular details of Treg-dependent
memory enhancement through CTLA4 in model viral infections. Importantly, CTLA4-Ig is FDA-approved Phase
III drug – ready for clinical translation. Therefore, immediate impact on our ability to quickly establish herd
immunity against SARS-CoV2 is expected. In addition to addressing the current COVID-19 exigency, these
studies are also relevant to other pandemics and situations of urgent vaccination of our defense troops for
quick deployment to disease endemic areas.
摘要(COVID-19 补充研究)
在快速传播的疾病爆发期间(例如当前的 COVID-19 大流行),快速诱导
通过疫苗接种实现群体免疫至关重要,目前有许多 SARS-CoV2 候选疫苗。
临床开发的各个阶段,旨在诱导强大的多模式保护性免疫,包括
然而,我们无法控制长寿命抗体和记忆 T 细胞的保护速度。
免疫后可能会建立免疫力,疫苗诱导的 T 细胞至少需要
初次免疫后约 20-30 天的抗原休息期,以有效下调其效应子
编程并转化为静止的、功能强大的、寿命长的记忆细胞,处于病原体的入口处
如果疫苗诱导的 T 细胞在这个强制休息期间重新暴露于抗原——这可能会发生。
如果在爆发期间接触剧毒病原体——数量、质量和总体防护
因此,免疫记忆的功效会受到显着损害。
发展是疫苗接种期间的一个关键目标,在大流行期间具有重要意义
加快对一线医疗保健和基本服务提供者的保护,并加快群体免疫
广大民众呼吁尽快恢复正常和经济增长。
在本行政补充中,我们将评估候选免疫调节策略,以加速和
通过促进 Treg 辅助效应器来增强疫苗诱导的对 SARS-CoV2 的保护性 T 细胞记忆
这项工作基于我们的研究,确定了 Tregs 在促进记忆转换方面的关键作用。
通过 CTLA4(一种在 Tregs 上表达最高的抑制分子)实现效应器到记忆的转换
(在所有免疫细胞中)(Immunity,2015)重要的是,反式施用的可溶性 CTLA4 能够单独发挥作用。
充分补充Tregs在记忆分化中的功能,加速保护性细胞的形成
通过促进效应器到记忆转换所需的代谢转换来抗病毒免疫。
病毒免疫模型的概念验证研究(在过去的 R21 和母公司 R01 的支持下进行)
奖)为增强免疫后 SARS-CoV2 特异性免疫记忆奠定坚实的基础
这些研究代表了一种自然的临床前小鼠模型中的候选 SARS-CoV2 疫苗。
母体 R01 的翻译延伸,重点关注 Treg 依赖性的机制和分子细节
通过 CTLA4 在病毒感染模型中增强记忆 重要的是,CTLA4-Ig 已获得 FDA 批准。
III 药物 - 准备进行临床转化 因此,直接影响我们快速建立群体的能力。
除了解决当前的 COVID-19 紧急情况外,这些药物还有望获得针对 SARS-CoV2 的免疫力。
研究还涉及其他流行病以及我们国防军紧急接种疫苗的情况
快速部署到疾病流行地区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surojit Sarkar其他文献
Surojit Sarkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Surojit Sarkar', 18)}}的其他基金
相似国自然基金
感毒清经ACE2/Ang(1-7)/MasR信号通路抑制PM2.5诱导慢性气道炎症的机制:聚焦肺泡巨噬细胞极化与“胞葬”的表型串扰
- 批准号:82305171
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于AT2/ACE2/Ang(1-7)/MAS轴调控心脏-血管-血液系统性重构演变规律研究心衰气虚血瘀证及其益气通脉活血化瘀治法生物学基础
- 批准号:82305216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体miRNAs介导细胞通讯的大豆ACE2激活肽调控血管稳态机制研究
- 批准号:32302080
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
刺参自溶引发机制中ACE2调控靶点的调控网络研究
- 批准号:32372399
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人类ACE2变构抑制剂的成药性及其抗广谱冠状病毒感染的机制研究
- 批准号:82330111
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
相似海外基金
Unraveling the molecular link between HIVAIDS and cancer
揭示艾滋病毒和癌症之间的分子联系
- 批准号:
10487135 - 财政年份:
- 资助金额:
$ 16.69万 - 项目类别:
Production Of HIV And HIV Related Proteins For Structural Studies
用于结构研究的 HIV 和 HIV 相关蛋白的生产
- 批准号:
10707808 - 财政年份:
- 资助金额:
$ 16.69万 - 项目类别: