RNA targeting specificity and immunomodulation by the influenza A virus ribonuclease PA-X
甲型流感病毒核糖核酸酶 PA-X 的 RNA 靶向特异性和免疫调节
基本信息
- 批准号:10231509
- 负责人:
- 金额:$ 4.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdult Respiratory Distress SyndromeAffectAirAnimal ModelAnti-Inflammatory AgentsAntiinflammatory EffectAntiviral AgentsBackBindingBioinformaticsBiologicalCellsChromatinDataData SetDevelopmentDiseaseEngineeringEnvironmentEpithelialEpithelial CellsGene ExpressionGenesGenetic TranscriptionGoalsHealthHigh-Throughput Nucleotide SequencingHumanImmuneImmune TargetingImmune responseImmunological ModelsImmunoprecipitationInfectionInflammationInflammatoryInflammatory ResponseInfluenzaInfluenza A virusInnate Immune ResponseInterferon Type IInterferonsIntronsKnowledgeLabelLeadLifeLinkLiquid substanceLungMeasuresMentorsMessenger RNAModelingMolecularMolecular Mechanisms of ActionMorbidity - disease rateMusMutateNatural ImmunityPancreatic ribonucleasePathway interactionsPhenotypePublicationsRNARNA DegradationRNA IRNA Polymerase IIRNA SplicingRegulationReporterRibonucleasesRoleRunningScientistSeasonsSpecificitySystemTechniquesTestingTherapeuticTherapeutic InterventionThiouridineTimeTrainingVaccinesViralViral ProteinsVirusVirus DiseasesWorkantiviral immunitybasebronchial epitheliumcareerchromatin immunoprecipitationcytokinedesignexperienceexperimental studyfightingimmunoregulationin vivoinfluenza infectioninfluenzavirusinnovationlaboratory experiencelung injurymortalitynovel therapeuticspandemic diseasepreventrecruitresponsesecondary infectionskillssmall molecule inhibitortranscriptometranscriptome sequencingtranscriptomicsviral transmissionvirologyvirus host interaction
项目摘要
PROJECT SUMMARY/ABSTRACT
Although inflammation is needed for the host to defend itself against influenza infection, too much inflammation
is detrimental to the host, and contributes to morbidity and mortality. Yet, available therapeutics are solely
antiviral and do not prevent inflammation-driven lung damage, mostly because how inflammation is regulated
during influenza infection is not fully understood. As a result, influenza virus still kills tens of thousands of
people every year in the US alone, and up to half a million worldwide. Since influenza itself has evolved
mechanisms to regulate the host innate immune and inflammatory response, studying these mechanisms is
one strategy to start designing new avenues of therapeutic intervention. Influenza A virus modulates host
responses to infection in part through its virus-encoded ribonuclease (RNase) PA-X. Indeed, mutated PA-X-
deficient viruses cause higher levels of inflammatory responses and increased mortality compared to wild-type
viruses in animal models of infection. While PA-X globally degrades host mRNAs, how this activity specifically
leads to modulation of the immune and inflammatory response is not known. Through transcriptomic analysis
of infected and PA-X expressing cells, the Gaglia lab has found that PA-X actually targets specific subsets of
RNAs, while sparing others. Importantly, innate immune genes are preferentially targeted by PA-X, consistent
with its in vivo anti-inflammatory phenotype. Our RNAseq data also uncovered that spliced RNAs are more
susceptible to PA-X degradation than intronless RNAs, a specificity that I confirmed using reporter constructs,
suggesting a mechanistic link between PA-X and splicing. However, how this splicing based mechanism allows
PA-X to modulate innate immunity and inflammation is unknown. In the proposed work, I will test the
hypothesis that PA-X exploits RNA splicing to target nascent RNAs, allowing PA-X to down-regulate genes that
are induced transcriptionally during infection and modulate the host innate immune response and inflammation.
In Aim 1, I will study the role of specific splicing steps in recruiting PA-X to RNAs. In Aim 2, I will explore the
link between PA-X targeting and transcription, and study the preferential targeting of nascent RNAs. In Aim 3, I
will connect these findings to regulation of innate immunity and inflammation by PA-X in a biologically relevant
3D lung culture model. The Gaglia lab provides the best training environment for me to complete this work, as
shown by my recent first-author publication, which expanded our understanding of the molecular mechanism of
action of PA-X. I will acquire the technical and conceptual skills that are required for this project through my
mentor’s comprehensive knowledge of viral control of host gene expression and high-throughput sequencing
dataset analysis, my co-mentor’s extensive experience in RNA work and transcription, and our collaborators’
expertise in human primary bronchial epithelial cultures and bioinformatic analysis. My mentors will also help
me develop as a scientist to achieve my career goal of running my own virology lab and train young scientists.
项目概要/摘要
虽然宿主需要炎症来防御流感感染,但过多的炎症
给宿主带来痛苦,并导致发病率和死亡率。然而,现有的治疗方法很有限。
抗病毒且不能预防炎症引起的肺部损伤,主要是因为炎症是如何调节的
因此,流感病毒仍然导致数万人死亡。
仅在美国,每年就有 50 万人感染流感,而自从流感本身进化以来,全世界就有 50 万人感染流感。
调节宿主先天免疫和炎症反应的机制,研究这些机制是
开始设计甲型流感病毒调节宿主的新途径的一项策略。
对感染的反应部分是通过其病毒编码的核糖核酸酶(RNase)PA-X 事实上,突变的 PA-X-。
与野生型相比,缺陷病毒会导致更高水平的炎症反应和更高的死亡率
虽然 PA-X 会全面降解宿主 mRNA,但这种活性如何具体发挥作用。
通过转录组分析尚不清楚是否会导致免疫和炎症反应的调节。
Gaglia 实验室发现,PA-X 实际上针对受感染细胞和表达 PA-X 的细胞的特定子集
RNA,同时不伤害其他基因,重要的是,PA-X 优先靶向先天免疫基因,这是一致的。
凭借其体内抗炎表型,我们的RNAseq数据还发现,剪接的RNA更多。
与无内含子 RNA 相比,PA-X 降解的能力更强,我使用报告敏感构建体证实了这一特异性,
表明 PA-X 和剪接之间存在机械联系,但是这种基于剪接的机制是如何实现的。
PA-X 调节先天免疫和炎症的作用尚不清楚,在拟议的工作中,我将对其进行测试。
假设 PA-X 利用 RNA 剪接来靶向新生 RNA,从而允许 PA-X 下调基因
在感染过程中转录诱导并调节宿主先天免疫反应和炎症。
在目标 1 中,我将研究特定剪接步骤在将 PA-X 募集到 RNA 中的作用。在目标 2 中,我将探讨特定剪接步骤的作用。
PA-X 靶向和转录之间的联系,并研究新生 RNA 的优先靶向。在目标 3 中,I。
将这些发现与 PA-X 在生物学相关的先天免疫和炎症调节中联系起来
Gaglia实验室的3D肺培养模型为我完成这项工作提供了最好的训练环境,因为
我最近发表的第一作者出版物表明,我们扩大了对分子机制的理解
我将通过我的 PA-X 行动获得该项目所需的技术和概念技能。
导师对宿主基因表达的病毒控制和高通量测序的全面知识
数据集分析、我的合作导师在 RNA 工作和转录方面的丰富经验以及我们的合作者的
我的导师在人类原代支气管上皮培养和生物信息学分析方面的专业知识也会提供帮助。
我发展成为一名科学家,以实现经营自己的病毒学实验室和培训年轻科学家的职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lea Gaucherand其他文献
Lea Gaucherand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lea Gaucherand', 18)}}的其他基金
RNA targeting specificity and immunomodulation by the influenza A virus ribonuclease PA-X
甲型流感病毒核糖核酸酶 PA-X 的 RNA 靶向特异性和免疫调节
- 批准号:
10493119 - 财政年份:2021
- 资助金额:
$ 4.18万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
COVID-19: SARS-CoV-2 Neutralizing Agents
COVID-19:SARS-CoV-2 中和剂
- 批准号:
10159672 - 财政年份:2021
- 资助金额:
$ 4.18万 - 项目类别:
Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Lung Diseases
肺生物学和肺部疾病中的干细胞、细胞疗法和生物工程
- 批准号:
10318408 - 财政年份:2021
- 资助金额:
$ 4.18万 - 项目类别:
Multiparametric mapping of Covid-19 immune responses in Kidney transplant recipients
肾移植受者 Covid-19 免疫反应的多参数绘图
- 批准号:
10241179 - 财政年份:2020
- 资助金额:
$ 4.18万 - 项目类别:
NOVEL PARACRINE MECHANISMS FOR CELL-BASED THERAPY OF INJURED LUNGS
用于受损肺部细胞治疗的新型旁分泌机制
- 批准号:
9379277 - 财政年份:2017
- 资助金额:
$ 4.18万 - 项目类别:
A 3D IN VITRO DISEASE MODEL OF ATRIAL CONDUCTION
心房传导 3D 体外疾病模型
- 批准号:
10166441 - 财政年份:2017
- 资助金额:
$ 4.18万 - 项目类别: