Investigating Novel Functions for NIK/MAP3K14 in High-Grade Glioma
研究 NIK/MAP3K14 在高级别胶质瘤中的新功能
基本信息
- 批准号:10402385
- 负责人:
- 金额:$ 32.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AttenuatedBioenergeticsCell RespirationCell SurvivalCellsCellular StressCellular StructuresDataDevelopmentEnergy MetabolismEnvironmentEquilibriumGene ExpressionGlioblastomaGliomaGlucoseGlycolysisGoalsGrowthHomeostasisHumanIKK alphaIn VitroInfiltrative GrowthKnock-outLaboratoriesMAP3K14 geneMalignant NeoplasmsMetabolicMetabolic PathwayMetabolic dysfunctionMetabolic stressMetabolismMitochondriaMolecularNF-kappa BNuclearNutrientOncogenicOxidative PhosphorylationOxygenPathogenesisPathway interactionsPatient-Focused OutcomesPatientsPhosphotransferasesPlayProductionPrognosisRecurrenceRegulationRegulatory PathwayResearchResistanceRoleSignal PathwaySignal TransductionStarvationTestingTherapeuticbasebiological adaptation to stressbrain tissuecancer cellcancer invasivenesscell motilitydesigndetection of nutrientexpectationexperimental studyglucose metabolismimprovedin vivoinhibitorinsightmigrationmitochondrial dysfunctionmitochondrial metabolismneoplastic cellnovelnovel therapeutic interventionnutrient deprivationresponsesensortherapy resistanttraffickingtumortumor growthtumor metabolismtumor microenvironmenttumor progressiontumorigenic
项目摘要
PROJECT SUMMARY
Cancer cells are able to adapt to grow uncontrollably and invasively in environments with limited availability
of nutrients — most notably, glucose and oxygen. Indeed, the aggressive migration and invasion of high-
grade gliomas, including glioblastoma multiforme (GBM), into healthy brain tissue are major factors
contributing to the therapy resistance and poor prognosis of this malignancy. While many cancer cells
preferentially utilize glycolysis to support growth, GBM cells have been shown to rely on both glycolysis and
mitochondrial metabolism for glucose energy utilization. Mitochondrial dynamics, or the balance between
mitochondrial fission and fusion, is a central mechanism for bioenergetic adaptations to cellular stresses
such as nutrient deprvation. Therefore, targeting de-regulated mitochondrial function is a highly attractive
therapeutic strategy for GBM. Recent findings have established key roles for NF-κB-inducing kinase
(NIK/MAP3K14) in regulating mitochondrial dynamics and subcellular trafficking to promote the
invasiveness and pathogenesis of GBM cells. Moreover, preliminary data demonstrate that mitochondrial
NIK enhances the resistance of GBM cells to nutrient/glucose starvation through regulation of mitochondrial
metabolism. Moreover, the mitochondrial actions of NIK are independent of its regulation of NF-κB activity.
However, the molecular mechanisms by which NIK coordinates regulation of mitochondrial function and
metabolic reprogramming in GBM cells are currently not known. This proposal tests the hypothesis that NIK
is induced by, and is an important regulator of, mitochondrial dynamics, cancer cell metabolism and
infiltrative growth in response to nutrient deprivation. The goals of the proposal are to functionally define
NIK-dependent regulatory networks and metabolic pathways that regulate cancer cell mitochondrial
functions and test the whether NIK inhibition will sensitize GBM cells to nutrient starvation and attenuate
tumor cell survival and pathogenesis. This proposal is anticipated to have an important positive impact
because understanding the molecular basis of NIK mitochondrial functions is likely to generate strong
justification for the development of novel, mechanism-based therapies for GBM that target mitochondrial
dysfunction, invasion, and de-regulated metabolism through NIK inhibition with the ultimate goal of
improving patient survival.
!
项目摘要
癌细胞能够在有限的环境中无法控制地和侵入性地生长
营养 - 最值得注意的是葡萄糖和氧气。确实,侵略性迁移和入侵高
级别的神经胶质瘤,包括多形胶质母细胞瘤(GBM),进入健康的脑组织是主要因素
促进这种恶性肿瘤的耐药性和预后不良。而许多癌细胞
优先利用糖酵解来支持生长,GBM细胞已显示出依赖于糖酵解和
线粒体代谢用于葡萄糖能利用。线粒体动力或之间的平衡
线粒体裂变和融合是生物能适应细胞应激的中心机制
例如营养剥夺。因此,靶向脱节的线粒体功能是一种极具吸引力的
GBM的治疗策略。最近的发现已经确立了NF-κB诱导激酶的关键作用
(NIK/MAP3K14)在控制线粒体动力学和亚细胞运输方面以促进
GBM细胞的侵入性和发病机理。此外,初步数据证明了线粒体
NIK通过调节线粒体增强了GBM细胞对营养/葡萄糖饥饿的耐药性
代谢。此外,NIK的线粒体作用与其对NF-κB活性的调节无关。
但是,NIK坐在线粒体功能和
GBM细胞中的代谢重编程目前尚不清楚。该提案检验了尼克的假设
是由线粒体动力学,癌细胞代谢和
侵入营养剥夺的渗透生长。该提案的目标是在功能上定义
依赖NIK的调节网络和代谢途径,可调节癌细胞线粒体
功能并测试NIK抑制是否会感知GBM细胞对营养饥饿并减弱
肿瘤细胞的存活和发病机理。预计该建议将产生重要的积极影响
因为了解NIK线粒体功能的分子基础可能会产生强大
开发针对线粒体的GBM的新型,基于机制的疗法的理由
通过NIK抑制,功能障碍,侵袭和脱离调节的新陈代谢,最终目标是
改善患者的生存。
呢
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transcriptional induction of NF-κB-inducing kinase by E2F4/5 facilitates collective invasion of GBM cells.
- DOI:10.1038/s41598-023-38996-9
- 发表时间:2023-08-11
- 期刊:
- 影响因子:4.6
- 作者:Pflug, Kathryn M.;Lee, Dong W.;McFadden, Kassandra;Herrera, Linda;Sitcheran, Raquel
- 通讯作者:Sitcheran, Raquel
Targeting NF-κB-Inducing Kinase (NIK) in Immunity, Inflammation, and Cancer.
- DOI:10.3390/ijms21228470
- 发表时间:2020-11-11
- 期刊:
- 影响因子:5.6
- 作者:Pflug KM;Sitcheran R
- 通讯作者:Sitcheran R
NF-κB-inducing kinase maintains mitochondrial efficiency and systemic metabolic homeostasis.
NF-κB 诱导激酶维持线粒体效率和全身代谢稳态。
- DOI:10.1016/j.bbadis.2023.166682
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Pflug,KathrynM;Lee,DongW;Keeney,JustinN;Sitcheran,Raquel
- 通讯作者:Sitcheran,Raquel
NIK promotes metabolic adaptation of glioblastoma cells to bioenergetic stress.
- DOI:10.1038/s41419-020-03383-z
- 发表时间:2021-03-15
- 期刊:
- 影响因子:9
- 作者:Kamradt ML;Jung JU;Pflug KM;Lee DW;Fanniel V;Sitcheran R
- 通讯作者:Sitcheran R
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling.
- DOI:10.1186/s12943-014-0273-1
- 发表时间:2015-01-27
- 期刊:
- 影响因子:37.3
- 作者:Cherry EM;Lee DW;Jung JU;Sitcheran R
- 通讯作者:Sitcheran R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RAQUEL SITCHERAN其他文献
RAQUEL SITCHERAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RAQUEL SITCHERAN', 18)}}的其他基金
Pathway-Specific NF-kappaB Regulatory Networks in Glioma
神经胶质瘤中通路特异性 NF-kappaB 调节网络
- 批准号:
9018069 - 财政年份:2014
- 资助金额:
$ 32.48万 - 项目类别:
Pathway-Specific NF-kappaB Regulatory Networks in Glioma
神经胶质瘤中通路特异性 NF-kappaB 调节网络
- 批准号:
8814285 - 财政年份:2014
- 资助金额:
$ 32.48万 - 项目类别:
Pathway-Specific NF-kappaB Regulatory Networks in Glioma
神经胶质瘤中通路特异性 NF-kappaB 调节网络
- 批准号:
8697269 - 财政年份:2014
- 资助金额:
$ 32.48万 - 项目类别:
NF-kappaB N-myc in Oncogenic Pathways of the CNS
中枢神经系统致癌途径中的 NF-kappaB N-myc
- 批准号:
7939233 - 财政年份:2009
- 资助金额:
$ 32.48万 - 项目类别:
NF-kappaB N-myc in Oncogenic Pathways of the CNS
中枢神经系统致癌途径中的 NF-kappaB N-myc
- 批准号:
7655366 - 财政年份:2006
- 资助金额:
$ 32.48万 - 项目类别:
NF-kappaB N-myc in Oncogenic Pathways of the CNS
中枢神经系统致癌途径中的 NF-kappaB N-myc
- 批准号:
7933859 - 财政年份:2006
- 资助金额:
$ 32.48万 - 项目类别:
NF-kappaB N-myc in Oncogenic Pathways of the CNS
中枢神经系统致癌途径中的 NF-kappaB N-myc
- 批准号:
7477942 - 财政年份:2006
- 资助金额:
$ 32.48万 - 项目类别:
NF-kappaB N-myc in Oncogenic Pathways of the CNS
中枢神经系统致癌途径中的 NF-kappaB N-myc
- 批准号:
7017578 - 财政年份:2006
- 资助金额:
$ 32.48万 - 项目类别:
NF-kappaB N-myc in Oncogenic Pathways of the CNS
中枢神经系统致癌途径中的 NF-kappaB N-myc
- 批准号:
7270635 - 财政年份:2006
- 资助金额:
$ 32.48万 - 项目类别:
相似国自然基金
脂肪源生物纳米颗粒通过抑制TRPV4激活保护线粒体生物能学调控VILI内皮屏障稳态的机制研究
- 批准号:82200094
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
脂肪源生物纳米颗粒通过抑制TRPV4激活保护线粒体生物能学调控VILI内皮屏障稳态的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高寒草甸生态系统小型鸟兽生物能学的研究
- 批准号:38670786
- 批准年份:1986
- 资助金额:3.0 万元
- 项目类别:面上项目
相似海外基金
Mitochondrial regulation of nociceptor function
伤害感受器功能的线粒体调节
- 批准号:
10644865 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Extracellular redox biology links to metabolic and mitochondrial dysfunction in pulmonary hypertension
细胞外氧化还原生物学与肺动脉高压的代谢和线粒体功能障碍有关
- 批准号:
10750457 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
mitoNEET as a therapeutic target for mitigating ischemic brain injury following MCAO
mitoNEET 作为减轻 MCAO 后缺血性脑损伤的治疗靶点
- 批准号:
10735923 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Mitochondrial proton leak and neonatal brain injury
线粒体质子泄漏与新生儿脑损伤
- 批准号:
10724518 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Glutamine Metabolism in Alveolar Macrophages following Influenza A Infection
甲型流感感染后肺泡巨噬细胞的谷氨酰胺代谢
- 批准号:
10607319 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别: