Digital behavioral phenotyping and multi-region electrophysiology to determine behavioral and neural network changes underlying the stress response in mice
数字行为表型和多区域电生理学,以确定小鼠应激反应背后的行为和神经网络变化
基本信息
- 批准号:10397657
- 负责人:
- 金额:$ 69.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Addictive BehaviorAddressAffectAnhedoniaAnimal BehaviorAntidepressive AgentsAnxiety DisordersAutopsyBehaviorBehavior monitoringBehavioralBig DataBiological MarkersBiologyBody TemperatureBrainBrain imagingBrain regionChronicChronic stressCircadian RhythmsClinicalCodeCommunicationCoupledCouplingDataData ScienceDecision MakingDiet HabitsDimensionsDoseEatingElectrophysiology (science)ElementsEquilibriumEvolutionEyeFoundationsFutureGoalsGroomingHippocampus (Brain)HistologicHumanImplantInterventionKetamineKnowledgeLibrariesLinkMachine LearningMajor Depressive DisorderMeasuresMedialMediatingMental HealthMental disordersMolecularMonitorMoodsMusNatureNeurobiologyNeurosciencesNucleus AccumbensPhenotypePhysiologicalPhysiologyPlayPredictive AnalyticsPrefrontal CortexProcessPsychological StressREM SleepRecoveryResolutionResponse ElementsRodentRoleSiteSleepSolidStressStructureSubstance Use DisorderSucroseSuggestionSynapsesSystemTechniquesTestingTimeVisionWorkactigraphyanalytical methodbasebehavior measurementbehavioral phenotypingbiological adaptation to stresscircadiancohesiondata structuredigitalfield studyforced swim testhands-on learningimprovedinnovationinsightinstrumentationlarge datasetsmachine learning methodneural circuitneural networkneuroregulationnovelpreferencerelating to nervous systemresponsestressortransmission process
项目摘要
ABSTRACT:
Chronic psychological stress triggers and exacerbates major depressive disorder (MDD) and many other
psychiatric conditions – causing changes in sleep, eating habits, addictive behaviors, activity levels, circadian
rhythms, mood and other domains. The rodent stress response shares many behavioral and physiologic
alterations with that of humans. Chronic stress also has broad effects on the brain. But major gaps exist in our
knowledge in regard to the integrated behavior and physiology as well as the corresponding brain circuit changes
with chronic stress. Prior work has found many behavioral and physiologic phenotypes of stress, but we lack a
cohesive sense of how these variables co-evolve over time. Our first aim is to delineate this co-evolution of stress
response elements in stressed versus unstressed mice. We will accomplish this by examining mice under a
chronic unpredictable stress (CUS) paradigm versus controls in our new naturalistic observation system the
“Digital Homecage”. This system allows us to monitor over 50 behavioral measures simultaneously over weeks.
Mice will live in these homecages for 8 weeks: 2 weeks baseline, 4 weeks CUS and 2 weeks of recovery. An
exploratory element of that aim is to use machine learning to determine a coherent mouse stress biomarker for
future quantitative studies. Our next goal is to determine electrophysiologic signatures of chronic stress. It is
known that chronic stress alters brain circuit synaptic structure and neuromodulatory balance. It is known that
the behavior is controlled by the electrophysiologic state of brain networks and that those networks operate both
locally within regions and via coordinated multi-regional transmission. Therefore, we aim to study changes in
electrophysiology both within and across regions. We focus on the medial prefrontal cortex, the ventral
hippocampus and infralimbic medial prefrontal cortex given their strong involvement in chronic stress. We will
implant tetrode arrays into these regions and will record over 8 weeks as above. In Aim 2, we will determine the
effects of chronic stress on within-region spiking tendencies including spike rate variability and excitatory-
inhibitory balance. In a second part of this aim we will use machine learning applied to a wider variety of within-
region dynamical measures to determine a potentially more complete set of differences between CUS and
control mice. In our final Aim, we will assess cross-regional coordination between these 3 regions. We will test
the hypothesis that pairwise coupling between regions will be altered in a manner consistent with MDD by
measuring coupling using both spiking and LFP. Again, we will then use machine learning methods on our large
dataset to detect further inter-regional dynamics un-revealed in our hypothesis-driven testing. This mixture of
behavior and electrophysiology is done to generate new understanding about chronic stress. We also have a
long-term vision of creating large dataset for future analysis, a fully-refined Digital Homecage system for future
studies, with an eye towards developing interventions based on natural electrophysiologic circuit function.
抽象的:
慢性心理压力触发和加剧重大抑郁症(MDD)和许多其他
精神病疾病 - 导致睡眠变化,饮食习惯,添加剂行为,活动水平,昼夜节律
节奏,情绪和其他领域。啮齿动物应力反应具有许多行为和生理性
人类的改变。慢性压力也对大脑也有广泛的影响。但是我们的
关于综合行为和生理学以及相应的大脑回路的知识变化
有慢性压力。先前的工作发现压力的许多行为和生理表型,但我们缺乏
这些变量如何随着时间的流逝而共同进化的结合感。我们的第一个目的是描述这种压力的共同发展
压力与无重理小鼠的反应元素。我们将通过在一个下检查小鼠来实现这一目标
慢性不可预测的压力(CUS)范式与我们的新自然主义观察系统中
“数字归宿”。该系统允许我们仅在数周内监视50多种行为措施。
小鼠将在这些家庭中生活8周:基线2周,4周CUS和2周的恢复。一个
该目的的探索性元素是使用机器学习来确定相干的小鼠压力生物标志物
未来的定量研究。我们的下一个目标是确定慢性应激的电生理特征。这是
知道慢性应力会改变脑电路的合成结构和神经调节平衡。众所周知
该行为由大脑网络的电生理状态控制,并且这些网络都可以运作
在区域内并通过协调的多区域传输。因此,我们旨在研究变更
在区域内部和跨区域的电生理学。我们专注于媒体前额叶皮层,腹侧
海马和额叶介质前额叶皮层的强烈参与慢性应激。我们将
植入四极阵列进入这些区域,并将在上述8周内记录。在AIM 2中,我们将确定
慢性应激对区域内尖峰趋势的影响,包括峰值速率变异性和兴奋性 -
抑制平衡。在此目标的第二部分中,我们将使用适用于多种内部的机器学习
区域动态度量,以确定CUS和
控制小鼠。在我们的最终目标中,我们将评估这三个区域之间的跨区域协调。我们将测试
区域之间成对耦合将以与MDD一致的方式改变的假设
使用尖峰和LFP测量耦合。同样,我们将在我们的大型上使用机器学习方法
在我们的假设驱动的测试中,数据集检测进一步的区域间动力学。这种混合物
行为和电生理学是为了产生对慢性压力的新理解。我们也有一个
创建大型数据集以供将来分析的长期愿景,这是一个完整的数字归乡系统,供未来
研究,着眼于基于天然电生理电路功能开发干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendon O Watson其他文献
Brendon O Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendon O Watson', 18)}}的其他基金
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 69.09万 - 项目类别:
Digital behavioral phenotyping and multi-region electrophysiology to determine behavioral and neural network changes underlying the stress response in mice
数字行为表型和多区域电生理学,以确定小鼠应激反应背后的行为和神经网络变化
- 批准号:
10199475 - 财政年份:2021
- 资助金额:
$ 69.09万 - 项目类别:
Digital behavioral phenotyping and multi-region electrophysiology to determine behavioral and neural network changes underlying the stress response in mice
数字行为表型和多区域电生理学,以确定小鼠应激反应背后的行为和神经网络变化
- 批准号:
10577805 - 财政年份:2021
- 资助金额:
$ 69.09万 - 项目类别:
A universal and 3D-printed rat calvarium replacement system to enable for pan-cortical and sub-cortical recordings and optogenetics
通用 3D 打印大鼠颅骨替换系统,可实现全皮层和皮层下记录和光遗传学
- 批准号:
10054940 - 财政年份:2020
- 资助金额:
$ 69.09万 - 项目类别:
Role of waking activity in determining sleep-based modification of cortical circuits
清醒活动在确定基于睡眠的皮质回路修改中的作用
- 批准号:
9473810 - 财政年份:2017
- 资助金额:
$ 69.09万 - 项目类别:
Role of waking activity in determining sleep-based modification of cortical circuits
清醒活动在确定基于睡眠的皮质回路修改中的作用
- 批准号:
8948537 - 财政年份:2015
- 资助金额:
$ 69.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New Technologies for Accelerating the Discovery and Characterization of Neuroactives that Address Substance Use Disorders
加速发现和表征解决药物使用障碍的神经活性物质的新技术
- 批准号:
10680754 - 财政年份:2023
- 资助金额:
$ 69.09万 - 项目类别:
PPARdelta receptors and alcohol use phenotypes
PPARδ 受体和饮酒表型
- 批准号:
10682348 - 财政年份:2023
- 资助金额:
$ 69.09万 - 项目类别:
Genetics of novelty seeking and propensity for drug abuse in outbred rats
近交系大鼠寻求新奇事物的遗传学和药物滥用倾向
- 批准号:
10669951 - 财政年份:2023
- 资助金额:
$ 69.09万 - 项目类别:
Project 1: The Reciprocal Relationship between Binge Drinking and Astrocytic Signaling
项目 1:酗酒与星形胶质细胞信号传导之间的相互关系
- 批准号:
10705859 - 财政年份:2022
- 资助金额:
$ 69.09万 - 项目类别:
Orexin modulation of brain reward-brain stress system interactions in alcohol withdrawal anxiety
食欲素调节酒精戒断焦虑中大脑奖赏-大脑应激系统相互作用
- 批准号:
10302090 - 财政年份:2022
- 资助金额:
$ 69.09万 - 项目类别: