Novel Algorithms for Reducing Radiation Dose of CT Perfusion
减少 CT 灌注辐射剂量的新算法
基本信息
- 批准号:10220967
- 负责人:
- 金额:$ 82.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmsAmerican Heart AssociationAnatomyAngiographyAnimalsBolus InfusionBrainBrain NeoplasmsCerebrovascular DisordersClinicalCollaborationsDataData SetDecision MakingDevelopmentDiagnosisDoseEvaluationFutureGoalsGuidelinesHeadHeartImageImaging TechniquesImaging technologyImpairmentInfarctionLocationLow Dose RadiationMalignant NeoplasmsMedicalMethodsModificationMonitorMorphologic artifactsMotionNoiseOrganPatientsPatternPenetrationPerfusionPhasePhysiologic pulsePublic HealthRadiation Dose UnitReperfusion TherapyRoentgen RaysRotationScanningSignal TransductionSmall Business Technology Transfer ResearchSpecific qualifier valueSpeedStrokeTechniquesTechnologyTimeTraumatic Brain InjuryTubeVariantVendorX-Ray Computed Tomographyacute strokebasebrain tissuecontrast imagingdeep learningdenoisinghemodynamicsimaging modalityinnovationlow dose computed tomographynovelperfusion imagingpreservationradiation effectreconstructiontemporal measurementvoltage
项目摘要
Project Summary/Abstract
X-ray computed tomography (CT) has been increasingly used in medical diagnosis, currently reaching more
than 100 million CT scans every year in the US. The increasing use of CT has sparked concern over the
effects of radiation dose on patients. It is estimated that every 2000 CT scans will cause one future cancer, i.e.,
50,000 cases of future cancers from 100 million CT scans every year. CT brain perfusion (CTP) is a widely
used imaging technique for the evaluation of hemodynamic changes in stroke and cerebrovascular disorders.
However, CTP involves high radiation dose for patients as the CTP scan is repeated on the order of 40 times
at the same anatomical location, in order to capture the full passage of the contrast bolus. Several techniques
have been applied for radiation dose reduction in CTP scans, including reduction of tube current and tube
voltage, as well as the use of noise reduction techniques such as iterative reconstruction (IR). However, the
resultant radiation dose of existing CTP scans is still significantly higher than that of a standard head CT scan.
The application of IR techniques in CTP is very limited due to the high complexity and computational burden
for processing multiple CTP images that impairs clinical workflow. During the Phase 1 STTR project, we
introduced a novel low dose CTP imaging method based on the k-space weighted image contrast (KWIC)
reconstruction algorithm. We performed thorough evaluation in both a CTP phantom and clinical CTP datasets,
and demonstrated that the KWIC algorithm is able to reduce the radiation dose of existing CTP techniques by
75% without affecting the image quality and accuracy of quantification (i.e., Milestone of Phase 1 STTR).
However, the original KWIC algorithm requires rapid-switching pulsed X-ray at pre-specified rotation angles – a
hardware capability yet to be implemented by commercial CT vendors. In order to address this limitation, we
recently introduced a variant of the KWIC algorithm termed k-space weighted image average (KWIA) that
preserves high spatial and temporal resolutions as well as image quality of low dose CTP data (~75% dose
reduction) to be comparable to those of standard CTP scans. Most importantly, KWIA does not require
modification of existing CT hardware and is computationally simple and fast, therefore has a low barrier for
market penetration. The purpose of the Phase 2 STTR project is to further optimize and validate the KWIA
algorithm for reducing radiation dose of CTP scans by ~75% while preserving the image quality and
quantification accuracy in CTP phantom, clinical CTP data and animal studies. We will further develop
innovative deep-learning (DL) based algorithms to address potential motion and other artifacts in KWIA, and
commercialize the developed algorithms by collaborating with CT vendors.
项目概要/摘要
X射线计算机断层扫描(CT)在医学诊断中的应用越来越广泛,目前已达到更多
美国每年进行超过 1 亿次 CT 扫描,CT 的使用不断增加,引发了人们对 CT 扫描的担忧。
据估计,每 2000 次 CT 扫描就会导致一种未来癌症,即
每年通过 1 亿次 CT 扫描发现 50,000 例未来癌症,CT 脑灌注 (CTP) 是一种广泛使用的技术。
使用成像技术评估中风和脑血管疾病的血流动力学变化。
然而,CTP 对患者来说涉及高辐射剂量,因为 CTP 扫描要重复 40 次左右
在同一解剖位置,为了捕捉对比团的完整通道,需要采取多种技术。
已应用于 CTP 扫描中减少辐射剂量,包括减少管电流和管
电压,以及使用迭代重建 (IR) 等降噪技术。
现有CTP扫描的最终辐射剂量仍然明显高于标准头部CT扫描。
由于高复杂性和计算负担,IR技术在CTP中的应用非常有限
为了处理损害临床工作流程的多个 CTP 图像,我们在第一阶段 STTR 项目中进行了处理。
介绍了一种基于k空间加权图像对比度(KWIC)的新型低剂量CTP成像方法
我们对 CTP 模型和临床 CTP 数据集进行了彻底的评估,
并证明 KWIC 算法能够通过以下方式降低现有 CTP 技术的辐射剂量:
75%,而不影响图像质量和量化精度(即第一阶段 STTR 的里程碑)。
然而,最初的 KWIC 算法需要以预先指定的旋转角度快速切换脉冲 X 射线 –
商业 CT 供应商尚未实现硬件功能,为了解决这一限制,我们。
最近引入了 KWIC 算法的一种变体,称为 k 空间加权图像平均 (KWIA),
保留低剂量 CTP 数据的高空间和时间分辨率以及图像质量(~75% 剂量
减少)与标准 CTP 扫描相当。最重要的是,KWIA 不需要。
对现有 CT 硬件进行修改,计算简单、速度快,因此门槛较低
第二阶段 STTR 项目的目的是进一步优化和验证 KWIA。
算法可将 CTP 扫描的辐射剂量减少约 75%,同时保持图像质量和
我们将进一步开发 CTP 模型、临床 CTP 数据和动物研究的量化准确性。
基于创新深度学习 (DL) 的算法可解决 KWIA 中潜在的运动和其他伪影问题,以及
通过与 CT 供应商合作,将开发的算法商业化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffry R Alger其他文献
Jeffry R Alger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffry R Alger', 18)}}的其他基金
Mapping brain glutamate in humans: sex differences in cigarette smokers
绘制人类大脑谷氨酸图谱:吸烟者的性别差异
- 批准号:
10376214 - 财政年份:2021
- 资助金额:
$ 82.16万 - 项目类别:
Novel Algorithms for Reducing Radiation Dose of CT Perfusion
减少 CT 灌注辐射剂量的新算法
- 批准号:
10006737 - 财政年份:2017
- 资助金额:
$ 82.16万 - 项目类别:
VALIDATION OF MAGNETIC RESONANCE PERFUSION IMAGING
磁共振灌注成像的验证
- 批准号:
6193264 - 财政年份:2000
- 资助金额:
$ 82.16万 - 项目类别:
VALIDATION OF MAGNETIC RESONANCE PERFUSION IMAGING
磁共振灌注成像的验证
- 批准号:
6394294 - 财政年份:2000
- 资助金额:
$ 82.16万 - 项目类别:
VALIDATION OF MAGNETIC RESONANCE PERFUSION IMAGING
磁共振灌注成像的验证
- 批准号:
6603227 - 财政年份:2000
- 资助金额:
$ 82.16万 - 项目类别:
VALIDATION OF MAGNETIC RESONANCE PERFUSION IMAGING
磁共振灌注成像的验证
- 批准号:
6540203 - 财政年份:2000
- 资助金额:
$ 82.16万 - 项目类别:
RESEARCH ANIMAL MAGNETIC RESONANCE IMAGING INSTRUMENT
研究动物磁共振成像仪
- 批准号:
2864968 - 财政年份:1999
- 资助金额:
$ 82.16万 - 项目类别:
PEDIATRIC LOW GRADE ASTROCYTOMA--TREATMENT GUIDANCE
儿童低度星形细胞瘤——治疗指南
- 批准号:
2837789 - 财政年份:1997
- 资助金额:
$ 82.16万 - 项目类别:
PEDIATRIC LOW GRADE ASTROCYTOMA--TREATMENT GUIDANCE
儿童低度星形细胞瘤——治疗指南
- 批准号:
2461212 - 财政年份:1997
- 资助金额:
$ 82.16万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 82.16万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 82.16万 - 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
- 批准号:
10637024 - 财政年份:2023
- 资助金额:
$ 82.16万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 82.16万 - 项目类别: