Discovering Care Coordination Practice Patterns in the EMR: Interpretation and Impact on Patient Outcomes
发现电子病历中的护理协调实践模式:解释及其对患者结果的影响
基本信息
- 批准号:10217257
- 负责人:
- 金额:$ 36.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAdoptionAgeAlgorithmsCardiologyCaringCase ManagerClinicClinicalComplexComputerized Medical RecordConfounding Factors (Epidemiology)DataData CollectionData EngineeringData StoreDiseaseDisease ManagementEffectivenessEnsureEnvironmentExertionExhibitsExpenditureFee-for-Service PlansGoalsGrainHealthHealth Care CostsHealth ExpendituresHealth ProfessionalHealthcareHospital CostsIndividualInterviewIntuitionKnowledgeLeadLearningLength of StayManualsMeasuresMethodologyMethodsNatureNursesOutcomePatient CarePatient observationPatient-Focused OutcomesPatientsPatternPatterns of CareProceduresProcessQuality of CareRaceRecording of previous eventsResearchServicesSocial WorkersStatistical MethodsStatistical ModelsSurveysSystemTestingTimeTranslatingTraumaUnited StatesUnited States Agency for Healthcare Research and QualityVariantbasecare coordinationcare deliverycare fragmentationcare providerscare systemscomorbiditycompare effectivenesscostdata miningdemographicsdesigneffectiveness evaluationeffectiveness measurehealth care deliveryhealth care servicehealth care service organizationhealth care settingshospital readmissionimprovedneglectpaymentreadmission ratessexstem
项目摘要
Healthcare expenditures in the United States reached $3.5 trillion in 2017, up 4.6 percent from 2016. It has
been recognized that prolonged length of stay (LOS) and unplanned readmission are two of the primary
causes of higher healthcare costs. Determining which factors are associated with prolonged LOS and
unplanned readmission will provide valuable knowledge about how to reduce costs and improve care delivery.
The Agency for Healthcare Research and Quality (AHRQ) has recognized that care fragmentation under a fee-
for-service system can lead to various problems, including poor harmonization of services and unnecessary
testing and procedures, all of which have the potential to extend LOS and unplanned readmissions. Effective
care coordination, has been proposed to resolve many of these problems, and is a priority of the National
Quality Strategy, which is led by AHRQ.
Yet, there are numerous challenges to measuring the effectiveness of care coordination. In particular, there is
a lack of a clear relationship with a patient’s outcome (e.g., prolonged LOS or unplanned readmission).
Electronic medical record (EMR)-based care coordination measures have been highlighted by AHRQ for three
potential advantages: i) minimal data collection burden, ii) rich clinical context and iii) longitudinal patient
observation. However, current EMR-based measures focus on an assessment of EMR systems (e.g.,
meaningful use) and compare effectiveness of care at a coarse-grained level (e.g., the relation between
meaningful use of an EMR system and reduction in LOS or unplanned readmission rates). Unfortunately, such
measures neglect the specific drivers (e.g., variations of interactions between healthcare professionals) of
variability in LOS and unplanned readmission rates. In this project, we will develop an EMR-based framework
to characterize care coordination at a fine-grained level, which accounts for the interaction network between
two or more healthcare professionals (e.g., doctors, nurses, social workers, care managers, and supporting
staff) involved in a patient’s care - and measure its impact on LOS and unplanned readmission.
To achieve the goal, we will design i) data mining algorithms to automatically learn care coordination patterns
and analyze LOS and unplanned readmission from the EMRs of ~2.3 million patients at a large academic
medical center with a long history of EMR use; ii) hypothesis-driven approaches to quantify the relationship
between a learned pattern and LOS and unplanned readmission, where a patient’s demographics (e.g., age,
race and sex) will be considered as confounding variables; and iii) an interpretation process to translate the
inferred patterns into actionable criteria for HCOs. This research is notable because methods created in the
project can be served as a scientific basis to automatically i) learn care coordination patterns across a wild
range of healthcare services and health conditions; and ii) measure the effectiveness of these patterns via their
relationships with various patient outcomes (e.g., LOS and unplanned readmission).
2017年美国医疗保健支出达到3.5万亿美元,比2016年增长4.6%。
人们认识到,延长住院时间(LOS)和计划外再入院是两个主要的原因。
确定哪些因素与延长 LOS 相关以及导致医疗费用增加的原因。
计划外再入院将提供有关如何降低成本和改善护理服务的宝贵知识。
医疗保健研究和质量局 (AHRQ) 已经认识到,收费下的护理分散化
服务体系可能会导致各种问题,包括服务协调不力和不必要的服务。
测试和程序,所有这些都有可能延长 LOS 和意外再入院。
护理协调已被提议解决许多此类问题,并且是国家的优先事项
质量战略,由 AHRQ 领导。
然而,衡量护理协调的有效性仍面临许多挑战。
与患者的结果缺乏明确的关系(例如,长期住院或计划外再入院)。
AHRQ 连续三年强调了基于电子病历 (EMR) 的护理协调措施
潜在优势:i) 最小的数据收集负担,ii) 丰富的临床背景和 iii) 纵向患者
然而,当前基于 EMR 的措施侧重于对 EMR 系统的评估(例如,
有意义的使用)并在粗粒度水平上比较护理的有效性(例如,
不幸的是,有效地使用 EMR 系统并减少 LOS 或计划外再入院率)。
措施忽略了具体的驱动因素(例如,医疗保健专业人员之间互动的变化)
在这个项目中,我们将开发一个基于 EMR 的框架。
细粒度地描述护理协调的特征,这说明了护理协调之间的相互作用网络
两名或两名以上医疗保健专业人员(例如医生、护士、社会工作者、护理经理和支持人员)
工作人员)参与患者的护理 - 并衡量其对 LOS 和意外再入院的影响。
为了实现这一目标,我们将设计 i) 数据挖掘算法来自动学习护理协调模式
并根据大型学术机构约 230 万名患者的 EMR 分析 LOS 和计划外再入院
具有长期使用 EMR 历史的医疗中心;ii) 量化关系的假设驱动方法;
学习模式与 LOS 和计划外再入院之间的关系,其中患者的人口统计数据(例如年龄、
种族和性别)将被视为混杂变量;以及 iii)翻译的解释过程
这项研究值得注意,因为在 HCO 中创建了方法。
项目可以作为自动学习护理协调模式的科学基础
医疗保健服务和健康状况的范围;以及 ii) 通过其衡量这些模式的有效性
与各种患者结果的关系(例如 LOS 和计划外再入院)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
You Chen其他文献
Association of Cigarette Consumption and Body Mass Index in the Cardiovascular Risk Survey
心血管风险调查中香烟消费与体重指数的关联
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Zhen-Ye Gan;Zi-Xiang Yu;You Chen;Dong-Ze Li - 通讯作者:
Dong-Ze Li
You Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('You Chen', 18)}}的其他基金
Machine learning drives translational research from drug interactions to pharmacogenetics
机器学习推动从药物相互作用到药物遗传学的转化研究
- 批准号:
10608598 - 财政年份:2023
- 资助金额:
$ 36.98万 - 项目类别:
Discovering Care Coordination Practice Patterns in the EMR: Interpretation and Impact on Patient Outcomes
发现电子病历中的护理协调实践模式:解释及其对患者结果的影响
- 批准号:
10015335 - 财政年份:2019
- 资助金额:
$ 36.98万 - 项目类别:
Discovering Care Coordination Practice Patterns in the EMR: Interpretation and Impact on Patient Outcomes
发现电子病历中的护理协调实践模式:解释及其对患者结果的影响
- 批准号:
10460162 - 财政年份:2019
- 资助金额:
$ 36.98万 - 项目类别:
Learning Patterns of Collaboration to Optimize the Management of Care Providers
学习协作模式以优化护理提供者的管理
- 批准号:
9265940 - 财政年份:2015
- 资助金额:
$ 36.98万 - 项目类别:
Learning Patterns of Collaboration to Optimize the Management of Care Providers
学习协作模式以优化护理提供者的管理
- 批准号:
9260987 - 财政年份:2015
- 资助金额:
$ 36.98万 - 项目类别:
Learning Patterns of Collaboration to Optimize the Management of Care Providers
学习协作模式以优化护理提供者的管理
- 批准号:
8820357 - 财政年份:2015
- 资助金额:
$ 36.98万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Improving Patient-Centered Decision-Making for Stress Urinary Incontinence Treatment in Older Men
改善老年男性压力性尿失禁治疗中以患者为中心的决策
- 批准号:
10729838 - 财政年份:2023
- 资助金额:
$ 36.98万 - 项目类别:
Developing a Trustworthy Multilevel Intervention to Improve Equity in Lung Cancer Screening
制定值得信赖的多层次干预措施以提高肺癌筛查的公平性
- 批准号:
10580196 - 财政年份:2023
- 资助金额:
$ 36.98万 - 项目类别:
COVID-19 shutdown: impact of healthcare disruptions on cardiovascular health disparities among people with multiple chronic conditions in New York City.
COVID-19 关闭:医疗保健中断对纽约市多种慢性病患者心血管健康差异的影响。
- 批准号:
10707047 - 财政年份:2022
- 资助金额:
$ 36.98万 - 项目类别:
COVID-19 shutdown: impact of healthcare disruptions on cardiovascular health disparities among people with multiple chronic conditions in New York City.
COVID-19 关闭:医疗保健中断对纽约市多种慢性病患者心血管健康差异的影响。
- 批准号:
10436056 - 财政年份:2022
- 资助金额:
$ 36.98万 - 项目类别:
Developmental Origins of Kidney Function in Early Life and Environmental Risks
生命早期肾功能的发育起源和环境风险
- 批准号:
10445341 - 财政年份:2020
- 资助金额:
$ 36.98万 - 项目类别: