Advanced glycation endproducts (AGEs) as metabolic by-products that mediate neurodegeneration.
晚期糖基化终产物 (AGE) 作为介导神经退行性变的代谢副产物。
基本信息
- 批准号:10213648
- 负责人:
- 金额:$ 64.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAdvanced Glycosylation End ProductsAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease riskAmyloid beta-ProteinArginineBinding ProteinsBiochemicalBiochemical PathwayCaenorhabditis elegansCellular StressCerebrospinal FluidChemicalsChronicComplementComplexDNADataDefectDiabetes MellitusDietDiseaseDrug Metabolic DetoxicationExhibitsFatty AcidsGenesGeneticGlucoseGlutathioneGlycolysisGoalsHumanHyperglycemiaHypersensitivityKetone BodiesLactoylglutathione LyaseLinkLipidsLongevityMediatingMediator of activation proteinMetabolicMetabolic PathwayMetabolic dysfunctionMetabolismModelingNerve DegenerationNeurodegenerative DisordersNeuronsObesityParalysedPathogenesisPathologyPathway interactionsPharmacologyPlayPost-Translational Protein ProcessingProductionProteinsPseudouridinePyruvaldehydeRNA SplicingReactionRiskRoleSeriesSerumTestingTouch sensationToxic effectWorkage effectage relatedage related neurodegenerationanaerobic glycolysisbasecell injurycrosslinkdiabeticfatty acid oxidationfeedingglucose metabolismlipid metabolismmortalitymutantneurotoxicitynew therapeutic targetnormal agingoverexpressionprotein aggregationproteotoxicityresponsetau Proteinstau mutationtherapeutic target
项目摘要
PROJECT SUMMARY/ ABSTRACT
Aging and chronic hyperglycemia results in several metabolic and biochemical perturbations including
elevation of a series of highly reactive α-dicarbonyl compounds (α-DCs, e.g., Methylglyoxal(MGO). α-DCs
are unavoidable byproducts largely of anaerobic glycolysis which react indiscriminately with proteins, lipids,
and DNA to yield a heterogeneous group of molecules called advanced glycation end products (AGEs). A
large body of evidence has linked accelerated glucose metabolism and diabetes to neurodegenerative
diseases like Alzheimer's disease (AD). We hypothesize that toxic byproducts of glucose metabolism that
result in the formation of AGEs explain the enhanced risk of AD due to hyperglycemia and diabetes. In support
of this AGEs in serum and AGE crosslinking in protein aggregates have been associated with enhanced
neurodegeneration in AD. However, AGEs are hard to model as they take years to accumulate in humans and
the mechanism by which they cause cellular damage remains to be elucidated. To overcome this gap, we have
established C. elegans (worm) models that significantly accumulate α-DCs and AGEs, exhibiting several age-
related pathologies, such as hypersensitivity to touch, neuronal damage, paralysis, and early mortality, all
within three weeks of adulthood. In addition, we have observed that direct administration of synthetic
methylglyoxal derived AGEs can directly cause neurotoxicity. Furthermore, we have observed that a C.
elegans model overexpressing the pro-aggregating form of tau, that has been implicated in Alzheimer's
disease, is sensitive to feeding either glucose or AGEs in the diet. In this proposal, we will test the hypothesis
that changes in glucose and lipid metabolism pathways, especially with age, influence MGO and associated
AGEs thereby causing neurodegeneration associated with AD. We will also determine the mechanisms by
which AGEs influence metabolic dysfunction and contribute to neurodegeneration in AD.
In Aim 1 we will explore a causal role for the effects of AGEs on neurodegeneration in normal aging and in
Alzheimer's disease models using synthetically derived AGEs. We will also examine the role of age-associated
changes in glucose metabolism in influencing the levels of MGO and AGEs and enhancing neurodegeneration
in models of AD. In Aim 2 we will determine the relationship between lipid metabolism and production of AGEs.
We will genetically and pharmacologically manipulate fatty acid oxidation pathways to examine their influence
on modulating neurodegeneration in normal aging and AD models through modulation of AGEs. In Aim 3 we
propose to identify the mechanisms by which AGEs mediate their toxicity leading to inhibition of fatty acid
oxidation and neurodegeneration. We will identify AGE-binding proteins and therapeutic targets to modulate
AGE-related neurodegeneration. These studies will identify several genetic and pharmacological targets to
ameliorate AGEs and slow down the progression of neurodegeneration in AD.
项目概要/摘要
衰老和慢性高血糖会导致多种代谢和生化紊乱,包括
一系列高活性α-二羰基化合物(α-DC,例如甲基乙二醛(MGO))的升高。α-DC
主要是无氧糖酵解不可避免的副产物,它们与蛋白质、脂质、
和 DNA 产生一组异质分子,称为晚期糖基化终产物 (AGE)。
大量证据表明葡萄糖代谢加速和糖尿病与神经退行性疾病有关
我们服用了葡萄糖代谢的有毒副产品,例如阿尔茨海默病(AD)。
AGE 形成的结果解释了高血糖和糖尿病导致 AD 风险增加。
血清中的 AGE 和蛋白质聚集体中的 AGE 交联与增强
然而,AGEs 很难建模,因为它们需要数年时间才能在人类体内积累。
它们引起细胞损伤的机制仍有待阐明。为了克服这一差距,我们已经做到了。
建立了线虫(蠕虫)模型,该模型显着积累 α-DC 和 AGE,表现出多种年龄-
相关病理,例如触摸过敏、神经元损伤、瘫痪和早期死亡,所有
此外,我们还观察到在成年后三周内直接施用合成药物。
甲基乙二醛衍生的 AGE 可以直接引起神经毒性。此外,我们观察到 C.
线虫模型过度表达 tau 蛋白的促聚集形式,这与阿尔茨海默病有关
疾病对饮食中添加葡萄糖或 AGE 很敏感。在本提案中,我们将检验这一假设。
葡萄糖和脂质代谢途径的变化,尤其是随着年龄的增长,会影响 MGO 和相关的
AGEs 从而导致与 AD 相关的神经变性,我们还将通过以下方式确定其机制。
AGE 会影响代谢功能障碍并导致 AD 中的神经变性。
在目标 1 中,我们将探讨 AGEs 对正常衰老和神经退行性变的影响的因果作用。
使用合成 AGE 建立阿尔茨海默病模型 我们还将研究与年龄相关的作用。
葡萄糖代谢的变化影响 MGO 和 AGE 的水平并加剧神经退行性变
在 AD 模型中,我们将确定脂质代谢与 AGE 产生之间的关系。
我们将从遗传和药理学角度操纵脂肪酸氧化途径来检查其影响
在目标 3 中,我们通过调节 AGE 来调节正常衰老和 AD 模型中的神经退行性变。
提议确定 AGE 介导其毒性从而抑制脂肪酸的机制
我们将确定 AGE 结合蛋白和调节的治疗靶点。
这些研究将确定一些与 AGE 相关的神经退行性疾病的遗传和药理学靶标。
改善 AGE 并减缓 AD 神经变性的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pankaj Kapahi其他文献
Pankaj Kapahi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pankaj Kapahi', 18)}}的其他基金
Targeting conserved diet-responsive transcriptional networks in neurons to slow neurodegeneration in Alzheimer's disease
针对神经元中保守的饮食反应转录网络以减缓阿尔茨海默病的神经退行性变
- 批准号:
10222430 - 财政年份:2021
- 资助金额:
$ 64.69万 - 项目类别:
Methylglyoxal drives astrocyte senescence to mediate neurodegeneration in Alzheimer's disease
甲基乙二醛驱动星形胶质细胞衰老介导阿尔茨海默病的神经退行性变
- 批准号:
10794538 - 财政年份:2020
- 资助金额:
$ 64.69万 - 项目类别:
Methylglyoxal drives astrocyte senescence to mediate neurodegeneration in Alzheimer's disease
甲基乙二醛驱动星形胶质细胞衰老介导阿尔茨海默病的神经退行性变
- 批准号:
10044138 - 财政年份:2020
- 资助金额:
$ 64.69万 - 项目类别:
Methylglyoxal drives astrocyte senescence to mediate neurodegeneration in Alzheimer's disease
甲基乙二醛驱动星形胶质细胞衰老介导阿尔茨海默病的神经退行性变
- 批准号:
10633000 - 财政年份:2020
- 资助金额:
$ 64.69万 - 项目类别:
Methylglyoxal drives astrocyte senescence to mediate neurodegeneration in Alzheimer's disease
甲基乙二醛驱动星形胶质细胞衰老介导阿尔茨海默病的神经退行性变
- 批准号:
10222563 - 财政年份:2020
- 资助金额:
$ 64.69万 - 项目类别:
Methylglyoxal drives astrocyte senescence to mediate neurodegeneration in Alzheimer's disease
甲基乙二醛驱动星形胶质细胞衰老介导阿尔茨海默病的神经退行性变
- 批准号:
10672363 - 财政年份:2020
- 资助金额:
$ 64.69万 - 项目类别:
Methylglyoxal drives astrocyte senescence to mediate neurodegeneration in Alzheimer's disease
甲基乙二醛驱动星形胶质细胞衰老介导阿尔茨海默病的神经退行性变
- 批准号:
10456805 - 财政年份:2020
- 资助金额:
$ 64.69万 - 项目类别:
Advanced glycation endproducts (AGEs) as metabolic by-products that mediate neurodegeneration.
晚期糖基化终产物 (AGE) 作为介导神经退行性变的代谢副产物。
- 批准号:
10417096 - 财政年份:2019
- 资助金额:
$ 64.69万 - 项目类别:
Advanced glycation endproducts (AGEs) as metabolic by-products that mediate neurodegeneration.
晚期糖基化终产物 (AGE) 作为介导神经退行性变的代谢副产物。
- 批准号:
10624982 - 财政年份:2019
- 资助金额:
$ 64.69万 - 项目类别:
Advanced glycation endproducts (AGEs) as metabolic by-products that mediate neurodegeneration.
晚期糖基化终产物 (AGE) 作为介导神经退行性变的代谢副产物。
- 批准号:
10017128 - 财政年份:2019
- 资助金额:
$ 64.69万 - 项目类别:
相似海外基金
Exploring regulatory mechanisms of glyoxalase-1
探索乙二醛酶-1的调控机制
- 批准号:
10646721 - 财政年份:2023
- 资助金额:
$ 64.69万 - 项目类别:
Understanding and Targeting the Pathophysiology of Youth-onset Type 2 Diabetes- NYU Clinical Center
了解并针对青年发病 2 型糖尿病的病理生理学 - 纽约大学临床中心
- 批准号:
10584108 - 财政年份:2023
- 资助金额:
$ 64.69万 - 项目类别:
Early life exercise effects on tendon maturation and resistance to late life tendinopathies
早期锻炼对肌腱成熟和晚年肌腱病抵抗力的影响
- 批准号:
10628956 - 财政年份:2023
- 资助金额:
$ 64.69万 - 项目类别:
Amadorins as a Novel Oral Therapeutic for Diabetic Retinopathy
Amadorins 作为糖尿病视网膜病变的新型口服疗法
- 批准号:
10601168 - 财政年份:2023
- 资助金额:
$ 64.69万 - 项目类别: