Transcriptional Control of Myocardin and the MYOCARDome
心肌素和 MYOCARDome 的转录控制
基本信息
- 批准号:10210425
- 负责人:
- 金额:$ 56.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-11-21 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Aortic AneurysmBacterial Artificial ChromosomesBindingBiological AssayBlood VesselsBlood flowCRISPR/Cas technologyCell Differentiation processChIP-seqClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCodeCre driverDNADataDependenceDevelopmentDiseaseDisease ProgressionDisease modelElementsEmbryoEngineeringEnhancersEpitopesFistulaGene ExpressionGenesGeneticGenetic Enhancer ElementGenetic TranscriptionGenomicsHomeostasisHumanImmunofluorescence ImmunologicKnock-outKnowledgeLuciferasesMaintenanceMediatingMessenger RNAMethodsModelingMolecularMusMutationNucleic Acid Regulatory SequencesPhenotypePreventionProcessProteinsQuantitative Reverse Transcriptase PCRRegulationRegulatory ElementReportingResearch DesignSerum Response FactorSmooth Muscle MyocytesSupporting CellSystemTestingTissuesTranscriptional RegulationTransgenic MiceTriad Acrylic ResinUntranslated RNAVascular DiseasesVascular Smooth MuscleVenouschromosome conformation capturecofactorexperimental studygain of functiongene discoverygene functiongenetic approachgenome editinggenomic datahuman diseasehuman modelin vivoinsightloss of functionmembermouse modelmyocardinnext generationnoveloverexpressionpostnatalpreventprogramstooltranscriptome sequencingtranscriptomicstranslational approachtranslational modelvirtual
项目摘要
Vascular smooth muscle cells (VSMCs) support nascent blood vessels during early development, but then
acquire an advanced differentiated phenotype essential for contraction and blood flow regulation. The major
effector of VSMC differentiation is the Serum Response Factor-Myocardin (SRF/MYOCD) transcriptional
switch, which binds CArG boxes found in many VSMC-restricted genes. This switch is often compromised
in disease states leading to VSMC de-differentiation. While levels of Myocardin are known to be reduced in
disease, we know virtually nothing about its regulatory control in vivo. Moreover, the downstream targets of
MYOCD (most notably, long noncoding RNAs) are not entirely known. We have generated a number of new
mouse models and enabling genomic data that allow us to rapidly define the transcriptional control of Myocd
in vivo and elucidate the function of novel SRF-dependent and SRF-independent MYOCD targets. We
propose three aims that leverage mouse models with the revolutionary CRISPR-Cas9 genome editing
system and state-of-the-art tools in genetics and genomics to test the hypothesis that SRF-dependent
and SRF-independent transcription of Myocd and the downstream MYOCARDome function to
maintain VSMC homeostasis. Aim 1 will utilize a new, biallelic-tagged Myocd mouse to interrogate
candidate enhancers and regulatory elements defined through ChIP-seq, computational prediction,
luciferase assay, or circular chromosome conformation capture (4C) assays. Two and three component
CRISPR will inform those regulatory regions of critical importance for Myocardin expression. Aim 2 will
utilize CRISPR-mediated loss-of-function mice and RNA-seq to begin deciphering the function of two novel
genes discovered in screens for MYOCD-inducibility: an SRF-dependent long noncoding RNA gene
(Mymsl) and an SRF-independent protein-coding gene (Kank1). Both genes are enriched in VSMC and
appear to function in the maintenance of normal VSMC differentiation. ChIP-seq studies will ascertain and
validate these MYOCD targets while disclosing the full MYOCARDome in VSMC using the dual epitope-
tagged mice of Aim 1. Aim 3 will further characterize the critical regulatory elements (Aim 1) and novel
MYOCD target genes (Aim 2) in models of vascular pathobiology (arterial-venous fistula and aortic
aneurysm). In addition, we will make use of new loss- and gain-of-function Myocd mice to further advance
our understanding of this critical cofactor and its downstream program in relevant models of human disease
where the VSMC differentiation program is compromised. Completion of the aims will vertically advance our
understanding of the regulatory processes undergirding Myocd expression and the function of novel
MYOCD target genes under normal and disease conditions. Such knowledge will inform the next generation
of experimental and clinical studies designed to maintain normal levels of Myocardin as a means of
thwarting the pervasive de-differentiation of VSMC observed in human disease.
血管平滑肌细胞(VSMC)在早期发育过程中支持新生的血管,但随后支持
获取用于收缩和血流调节必不可少的高级分化表型。专业
VSMC分化的效应因子是血清反应因子 - 肌心蛋白(SRF/MYOCD)转录
开关,它结合了许多VSMC限制基因中发现的carg盒子。此开关经常被妥协
在疾病状态下,导致VSMC脱不同。众所周知,心肌素水平降低
疾病,我们几乎对其在体内的监管控制一无所知。此外,下游目标
MyOCD(最值得注意的是,长期不编码的RNA)并不完全知道。我们已经生成了许多新的
鼠标模型并启用基因组数据,使我们能够快速定义MyOCD的转录控制
体内并阐明了新型SRF依赖性和独立于SRF的MYOCD靶标的功能。我们
提出三个目标,以革命性的CRISPR-CAS9基因组编辑来利用鼠标模型
遗传学和基因组学的系统和最先进的工具,以检验SRF依赖性的假设
MyOCD和下游心肌功能的独立于SRF的转录
维持VSMC稳态。 AIM 1将利用一种新的,双重标记的MyOCD鼠标来询问
候选增强子和调节元素通过chip-seq,计算预测,
荧光素酶测定或圆形染色体构象捕获(4C)测定。两个组件
CRISPR将为那些对心肌表达的监管区域提供至关重要的重要性。 AIM 2意志
利用CRISPR介导的功能丧失小鼠和RNA-seq开始解读两个新颖的功能
在筛选中发现的基因具有肌动物诱导性:SRF依赖性长无编码RNA基因
(MYMSL)和独立于SRF的蛋白质编码基因(KANK1)。这两个基因都富含VSMC和
在维持正常VSMC分化的维持中似乎起作用。 Chip-seq研究将确定和
验证这些MyOCD靶标,同时使用双表位 -
AIM 1的标记小鼠AIM 3将进一步描述关键的调节元素(AIM 1)和新颖
在血管病理学模型(动脉 - 病毒瘘和主动脉)模型中的MyOCD靶基因(AIM 2)
动脉瘤)。此外,我们将利用新的损失和功能获得的MYOCD小鼠来进一步进步
我们对这种关键辅助因子及其在人类疾病相关模型中的下游计划的理解
VSMC分化程序被妥协的地方。目的的完成将垂直促进我们的
了解少于MyOCD表达的调节过程和新颖的功能
在正常和疾病条件下,MyOCD靶基因。这样的知识将告知下一代
实验和临床研究旨在维持正常水平的心肌素作为一种手段
挫败在人类疾病中观察到的VSMC的普遍脱不同。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New "Lnc" to Brake Inflammation.
抑制炎症的新“Lnc”。
- DOI:10.1161/atvbaha.123.319444
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Long,Xiaochun;Miano,JosephM;Zhou,Jiliang
- 通讯作者:Zhou,Jiliang
Generating a CRISPR knockout mouse through a strong premature termination codon: a cautionary tale.
- DOI:10.7555/jbr.34.20200106
- 发表时间:2020-12-25
- 期刊:
- 影响因子:2.3
- 作者:Lyu QR;Yao P;Miano JM
- 通讯作者:Miano JM
Of mice and human-specific long noncoding RNAs.
- DOI:10.1007/s00335-022-09943-2
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ghanam AR;Bryant WB;Miano JM
- 通讯作者:Miano JM
Prime editing in mice reveals the essentiality of a single base in driving tissue-specific gene expression.
- DOI:10.1186/s13059-021-02304-3
- 发表时间:2021-03-16
- 期刊:
- 影响因子:12.3
- 作者:Gao P;Lyu Q;Ghanam AR;Lazzarotto CR;Newby GA;Zhang W;Choi M;Slivano OJ;Holden K;Walker JA 2nd;Kadina AP;Munroe RJ;Abratte CM;Schimenti JC;Liu DR;Tsai SQ;Long X;Miano JM
- 通讯作者:Miano JM
CRISPR links to long noncoding RNA function in mice: A practical approach.
- DOI:10.1016/j.vph.2019.02.004
- 发表时间:2019-03
- 期刊:
- 影响因子:4
- 作者:J. Miano;Xiaochun Long;Qing R. Lyu
- 通讯作者:J. Miano;Xiaochun Long;Qing R. Lyu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph M Miano其他文献
Joseph M Miano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph M Miano', 18)}}的其他基金
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
10337251 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Role of Smooth Muscle Calponin in Vascular Pathobiology
平滑肌钙调蛋白在血管病理学中的作用
- 批准号:
10053587 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Role of Smooth Muscle Calponin in Vascular Pathobiology
平滑肌钙调蛋白在血管病理学中的作用
- 批准号:
10077575 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Transcriptional Control of Myocardin and the MYOCARDome
心肌素和 MYOCARDome 的转录控制
- 批准号:
10059023 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
9764180 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Role of Smooth Muscle Calponin in Vascular Pathobiology
平滑肌钙调蛋白在血管病理学中的作用
- 批准号:
10308708 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
10060485 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Regulation and Function of SRF in Vascular Pathiobiology
SRF 在血管病理生物学中的调节和功能
- 批准号:
10112303 - 财政年份:2019
- 资助金额:
$ 56.95万 - 项目类别:
Regulation and Function of Myocardin in Vascular Pathobiology
心肌素在血管病理学中的调控和功能
- 批准号:
9042030 - 财政年份:2013
- 资助金额:
$ 56.95万 - 项目类别:
Regulation and Function of Myocardin in Vascular Pathobiology
心肌素在血管病理学中的调控和功能
- 批准号:
8820129 - 财政年份:2013
- 资助金额:
$ 56.95万 - 项目类别:
相似海外基金
Regulation of paraspeckles by STAU1 in neurodegenerative disease
STAU1 在神经退行性疾病中对 paraspeckles 的调节
- 批准号:
10668027 - 财政年份:2023
- 资助金额:
$ 56.95万 - 项目类别:
Mechanisms of repressive interactions between developmental gene regulatory networks
发育基因调控网络之间的抑制相互作用机制
- 批准号:
10752429 - 财政年份:2023
- 资助金额:
$ 56.95万 - 项目类别:
Modulation of Somatic Repeat Expansion as a Therapeutic Approach to Huntington's Disease
调节体细胞重复扩增作为亨廷顿病的治疗方法
- 批准号:
10678016 - 财政年份:2023
- 资助金额:
$ 56.95万 - 项目类别:
An R2 non-neuroinvasive herpes simplex virus type 2 vaccine
R2 非神经侵袭性单纯疱疹病毒 2 型疫苗
- 批准号:
10698921 - 财政年份:2023
- 资助金额:
$ 56.95万 - 项目类别:
Multilineage DAmFRET to investigate AD/ADRD protein phase behavior in neural tissue models
多谱系 DAmFRET 研究神经组织模型中 AD/ADRD 蛋白相行为
- 批准号:
10583428 - 财政年份:2023
- 资助金额:
$ 56.95万 - 项目类别: