Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
基本信息
- 批准号:10390339
- 负责人:
- 金额:$ 37.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAddressAdenylate CyclaseAdoptedAdoptionAnimal ModelAxonBindingBiological AssayBrainCaenorhabditis elegansCellsChemical SynapseChemicalsCultured CellsCyclic AMPCyclic AMP-Dependent Protein KinasesDataElectrical SynapseExhibitsFunctional disorderG-Protein-Coupled ReceptorsGap JunctionsGenesGeneticGenetic TranscriptionHumanImageImaging TechniquesImpairmentInterneuronsIonsKinesinLocomotionMammalian CellMediatingMethodsMicrotubulesModelingMolecularMotorMotor ActivityMotor NeuronsMovementNematodaNervous system structureNeuronsNeuropeptide ReceptorPathway interactionsPositioning AttributeProcessProteinsRoleSignal TransductionSpecific qualifier valueSpecificitySpinal CordSpinal cord injurySynapsesTestingTranscriptVesicleWorkanterograde transportbiochemical modelexperimental studygenetic analysisimaging modalityin vitro Assayin vivolive cell imagingmembermutantneuronal cell bodynoveloptogeneticsphosphoric diester hydrolasepreservationpreventprogramssingle moleculetherapy developmenttooltraffickingtranscription factortranscriptome sequencing
项目摘要
SUMMARY
Gap junctions or “electrical synapses” mediate the flow of ions between neurons and are thus
essential to normal brain function. Circuit activity is defined by the selective placement of
electrical synapses between specific neurons and in particular cellular compartments.
Although much has been learned about the mechanisms that direct assembly of chemical
synapses between specific neurons, little is known of the pathways that drive the creation of
neuron-specific electrical synapses. With its stereotypical placement of gap junctions and
powerful tools for genetic analysis and imaging, the C. elegans motor circuit offers a unique
opportunity to investigate gap junction specificity. VA and VB motor neurons are connected via
gap junctions to command interneurons (AVA or AVB) that drive backward (VAàAVA) or
forward (VBàAVB) locomotion. Notably, VAàAVA gap junctions are placed on the VA axon
whereas VBàAVB gap junctions are positioned on VB cell soma. The UNC-4 transcription
factor functions in VAs to preserve VAàAVA electrical synapses; unc-4 mutants adopt
VAàAVB gap junctions on VA cell bodies and are thus unable to move backward. Thus, UNC-
4 regulates a transcriptional program that defines both the cellular compartment and neuron-
specificity of gap junction placement. We used VA-specific RNA-Seq data to reveal that UNC-
4 blocks expression of a phosphodiesterase, PDE-1, that degrades cAMP, and a neuropeptide
receptor, FRPR-17, that functions in a GaO pathway that antagonizes cAMP synthesis. Aim 1
tests the hypothesis that UNC-4 represses specific downstream targets to maintain cAMP
which in turn sustains VAàAVA gap junctions. Our RNA-Seq data revealed that another UNC-
4 target, the atypical kinesin VAB-8, is ectopically expressed in unc-4 mutant VAs where it
antagonizes normal trafficking of gap junction components into the VA axon. Aim 2 tests the
hypothesis that VAB-8 binds to microtubules to block the anterograde function of kinesins that
drive gap junction transport, thus, facilitating the formation of VAàAVB gap junctions on VA
cell soma. Aim 3 uses single molecule imaging techniques to test a “blockade” model in which
VAB-8 lacks ATPase/motor activity but binds to microtubules to impair gap junction export from
the cell soma. Although studies in cultured mammalian cells have implicated cAMP signaling
and trafficking in gap junction assembly, these pathways have not been tested for functional
roles in neuron-specific placement of electrical synapses in an intact nervous system. Thus,
our work with a model organism could provide important clues to fundamental processes
governing the formation electrical synapses in the human brain.
概括
间隙连接或“电突触”介导神经元之间的离子流动,因此
正常大脑功能所必需的电路活动是通过选择性放置来定义的。
特定神经元和特定细胞区室之间的电突触。
尽管人们对直接化学组装的机制已经了解很多
特定神经元之间的突触,人们对驱动突触产生的途径知之甚少
神经元特异性电突触具有间隙连接的典型位置和
作为遗传分析和成像的强大工具,线虫运动电路提供了独特的
研究间隙连接特异性的机会 VA 和 VB 运动神经元通过连接。
间隙连接命令中间神经元(AVA或AVB)向后驱动(VAàAVA)或
向前 (VBàAVB) 运动 值得注意的是,VAàAVA 间隙连接位于 VA 轴突上。
而 VBàAVB 间隙连接位于 VB 细胞体上 UNC-4 转录。
VA 中保留 VAàAVA 电突触的因子功能采用 unc-4 突变体;
VAàAVB 间隙连接在 VA 细胞体上,因此无法向后移动,因此,UNC-。
4 调节定义细胞区室和神经元的转录程序
我们使用 VA 特异性 RNA-Seq 数据来揭示 UNC-
4 阻断磷酸二酯酶 PDE-1 的表达,该酶可降解 cAMP 和神经肽
受体 FRPR-17,在 GaO 途径中发挥作用,拮抗 cAMP Aim 1。
测试 UNC-4 抑制特定下游靶标以维持 cAMP 的假设
这反过来又维持了 VAàAVA 间隙连接。我们的 RNA-Seq 数据显示,另一个 UNC-
4 靶标,即非典型驱动蛋白 VAB-8,在 unc-4 突变体 VA 中异位表达,其中
拮抗间隙连接成分进入 VA 轴突的正常运输。 Aim 2 测试了
假设 VAB-8 与微管结合以阻断驱动蛋白的顺行功能
驱动间隙连接运输,从而促进 VA 上 VAàAVB 间隙连接的形成
Aim 3 使用单分子成像技术来测试“封锁”模型,其中
VAB-8 缺乏 ATP 酶/运动活性,但与微管结合以损害间隙连接输出
尽管对培养的哺乳动物细胞的研究表明 cAMP 信号传导有关。
和间隙连接组装的运输,这些途径尚未经过功能测试
在完整神经系统中电突触的神经元特异性放置中的作用因此,
我们对模型生物体的研究可以为基本过程提供重要线索
控制人脑中电突触的形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID M MILLER其他文献
DAVID M MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID M MILLER', 18)}}的其他基金
Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
- 批准号:
10609808 - 财政年份:2020
- 资助金额:
$ 37.25万 - 项目类别:
Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
- 批准号:
9974108 - 财政年份:2020
- 资助金额:
$ 37.25万 - 项目类别:
Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
- 批准号:
10163931 - 财政年份:2020
- 资助金额:
$ 37.25万 - 项目类别:
Identification of transcriptional determinants of dendritic patterning
树突图案化转录决定因素的鉴定
- 批准号:
7821407 - 财政年份:2009
- 资助金额:
$ 37.25万 - 项目类别:
Identification of Synaptic remodeling Genes in C. elegans
秀丽隐杆线虫突触重塑基因的鉴定
- 批准号:
7230128 - 财政年份:2006
- 资助金额:
$ 37.25万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
- 批准号:
10609808 - 财政年份:2020
- 资助金额:
$ 37.25万 - 项目类别:
Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
- 批准号:
9974108 - 财政年份:2020
- 资助金额:
$ 37.25万 - 项目类别:
Molecular mechanisms for neuron-specific assembly of electrical synapses
电突触神经元特异性组装的分子机制
- 批准号:
10163931 - 财政年份:2020
- 资助金额:
$ 37.25万 - 项目类别:
Regulation of V-ATPase-mediated Renal Proton Secretion
V-ATP酶介导的肾质子分泌的调节
- 批准号:
7993809 - 财政年份:2010
- 资助金额:
$ 37.25万 - 项目类别:
Mechanisms of Kinase-dependent Regulation of the V-ATPase in Kidney
肾脏中 V-ATP 酶的激酶依赖性调节机制
- 批准号:
8323953 - 财政年份:2009
- 资助金额:
$ 37.25万 - 项目类别: