Defining Structural and Molecular Mechanisms of The Human Multifunctional Mitochondrial Protease, LONP1
定义人类多功能线粒体蛋白酶 LONP1 的结构和分子机制
基本信息
- 批准号:10389398
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-03 至 2025-01-02
- 项目状态:未结题
- 来源:
- 关键词:ATPase DomainAdoptedAffectAgingAllosteric RegulationAutomobile DrivingBindingBiochemicalBiological AssayBiologyBiophysicsC-terminalCell physiologyCerebrumClinicalComplexCryoelectron MicroscopyDNA BindingDNA-Binding ProteinsDentalDevelopmentDiseaseEmbryoGenetic TranscriptionGenomeGenome StabilityGoalsHandHealthHomeostasisHumanHypoxiaKnock-outLengthMaintenanceMalignant NeoplasmsMapsMediatingMetabolismMethodologyMitochondriaMitochondrial DNAMitochondrial DiseasesModelingMolecularMolecular ChaperonesMolecular ConformationMorphologyMusMutationN-terminalNeurodegenerative DisordersNucleotidesOxidative PhosphorylationOxidative StressPathogenesisPeptide HydrolasesPost-Translational Protein ProcessingProcessProtease DomainProteinsProtomerPublishingQuality ControlRegulationRegulation of ProteolysisReportingRespirationRoleSS DNA BPSmall Interfering RNAStressStructureSupervisionSystemTrainingTranscriptional RegulationTranslationsUntranslated RNAWorkbiophysical analysiscytochrome c oxidasedevelopmental diseaseendopeptidase Lafactor Agenomic locusinsightmitochondrial genomeoxidative damageprofessorprotein aggregationproteostasisresponseskeletalsteroidogenic acute regulatory proteintranscription factor
项目摘要
PROJECT SUMMARY
Integrated quality control (QC) systems are required to sense and manage mitochondrial stress, and their
dysregulation is associated with neurodegenerative disease, aging, and cancer. The human ATP-dependent
AAA+ protease, LONP1, has emerged as a master regulator of mitochondrial functions and is an integral
component of mitochondrial QC systems. Deletion of LONP1 in mice is embryonically lethal and altered LONP1
activity is associated with mitochondrial diseases, aging, and cancer. LONP1 classically functions by degrading
oxidatively damaged and unfolded matrix proteins, but also regulates diverse aspects of mitochondrial biology
by specifically targeting and degrading folded proteolytic targets such as transcription factor A (TFAM) and
cytochrome C oxidase subunit IV (COXIV). Additionally, LONP1 is a single stranded DNA binding protein that
localizes to the non-coding control region of mitochondrial DNA, which is important for transcription and genome
replication. LONP1 assembles as a 600 kDa hexamer composed of an N-terminal substrate binding domain
(NTD), a AAA+ ATPase domain, and a C-terminal protease domain and can function as a protease, a chaperone,
or a DNA binding protein. Despite these diverse critical functions, we lack detailed molecular mechanisms
describing these activities and their regulation, limiting the fields capacity to determine their specific roles in
mitochondrial homeostasis or disease pathogenesis. Recent cryo-electron microscopy (cryo-EM) studies have
provided crucial insights into LONP1's conserved, AAA+-mediated hand-over-hand substrate translocation
mechanism required to processively engage, unfold, and degrade proteolytic substrates. Strikingly, in these
structures, the C-terminal protease domains remain in an inactive conformation even with substrate bound to
LONP1's AAA+ domain. These findings contrast recent work on the evolutionarily related bacterial Lon protease
and suggest that LONP1 has evolved additional levels of regulation to control or tune proteolytic activity to meet
cellular needs. Moreover, these results raise important questions regarding proteolytic regulation and its
relationship to other reported cellular functions, including DNA binding. Therefore, the long-term goal of this
proposal will be to establish mechanistic models for LONP1's manifold functions and their allosteric regulation
in order to define their role in mitochondrial maintenance and disease. I hypothesize that LONP1 adopts distinct
structural conformations allosterically regulated by nucleotide state, substrate binding, and/or posttranslational
modifications to shift between operational modes to modulate proteolytic and mtDNA binding activities. I will
integrate structural studies using cryo-EM with biochemical assays to identify allosteric mechanisms involved in
regulating LONP1's proteolytic activity (Aim 1) and elucidate the molecular mechanism and conformational state
required for LONP1's mtDNA binding activity (Aim 2).
项目摘要
需要综合质量控制(QC)系统来感知和管理线粒体压力及其
失调与神经退行性疾病,衰老和癌症有关。人ATP依赖
AAA+蛋白酶,LONP1已成为线粒体功能的主调节器,是一个积分不可或缺的
线粒体QC系统的组成部分。 LONP1在小鼠中的删除是胚胎致死的,改变了LONP1
活性与线粒体疾病,衰老和癌症有关。 LONP1经典通过退化发挥作用
氧化受损和展开的基质蛋白,但也调节线粒体生物学的各个方面
通过专门针对和降解折叠的蛋白水解靶标,例如转录因子A(TFAM)和
细胞色素C氧化酶亚基IV(Coxiv)。另外,LONP1是一种单链DNA结合蛋白
定位于线粒体DNA的非编码控制区,这对于转录和基因组很重要
复制。 LONP1作为由N末端底物结合域组成的600 kDa六聚体组装
(NTD),AAA+ ATPase结构域和C末端蛋白酶域,并且可以用作蛋白酶,伴侣,伴侣,
或DNA结合蛋白。尽管有这些不同的关键功能,但我们缺乏详细的分子机制
描述这些活动及其法规,限制了田野的能力来确定其在
线粒体稳态或疾病发病机理。最近的冷冻电子显微镜(冷冻EM)研究具有
提供了对LONP1保守的AAA+介导的手击底物易位的关键见解
进行过程参与,展开和降解蛋白水解底物所需的机制。令人惊讶的是,在这些中
结构,C末端蛋白酶结构域仍然处于非活动构象中,即使底物结合到
LONP1的AAA+域。这些发现与有关进化相关的细菌lon蛋白酶的最新工作对比
并表明LONP1已经进化了其他调节水平以控制或调整蛋白水解活性以满足
细胞需求。此外,这些结果提出了有关蛋白水解调节及其的重要问题
与其他报道的细胞功能的关系,包括DNA结合。因此,这个长期目标
提案将是为LONP1的流动功能及其变构调节建立机械模型
为了定义它们在线粒体维持和疾病中的作用。我假设LONP1采用了独特的
结构构象在核苷酸状态,底物结合和/或翻译后的变构中
修改操作模式之间转移以调节蛋白水解和mtDNA结合活性。我会
使用冷冻EM与生化测定法整合结构研究,以鉴定涉及的变构机制
调节LONP1的蛋白水解活性(AIM 1)并阐明分子机制和构象状态
LONP1的mtDNA结合活性所需(AIM 2)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Todd Mindrebo其他文献
Jeffrey Todd Mindrebo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Todd Mindrebo', 18)}}的其他基金
Defining Structural and Molecular Mechanisms of The Human Multifunctional Mitochondrial Protease, LONP1
定义人类多功能线粒体蛋白酶 LONP1 的结构和分子机制
- 批准号:
10549721 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Defining Structural and Molecular Mechanisms of The Human Multifunctional Mitochondrial Protease, LONP1
定义人类多功能线粒体蛋白酶 LONP1 的结构和分子机制
- 批准号:
10549721 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
GIPC3, multifunctional myosin adaptor in mammalian auditory hair cells
GIPC3,哺乳动物听毛细胞中的多功能肌球蛋白适配器
- 批准号:
10188498 - 财政年份:2020
- 资助金额:
$ 6.72万 - 项目类别:
GIPC3, multifunctional myosin adaptor in mammalian auditory hair cells
GIPC3,哺乳动物听毛细胞中的多功能肌球蛋白适配器
- 批准号:
10624964 - 财政年份:2020
- 资助金额:
$ 6.72万 - 项目类别:
GIPC3, multifunctional myosin adaptor in mammalian auditory hair cells
GIPC3,哺乳动物听毛细胞中的多功能肌球蛋白适配器
- 批准号:
10405572 - 财政年份:2020
- 资助金额:
$ 6.72万 - 项目类别:
Novel approaches for studying topoisomerase 2 targeting anti-cancer drugs
研究靶向抗癌药物的拓扑异构酶 2 的新方法
- 批准号:
9306402 - 财政年份:2017
- 资助金额:
$ 6.72万 - 项目类别: