Hijacking cancer driver to activate cell death by chemically induced proximity
劫持癌症驱动因素通过化学诱导接近激活细胞死亡
基本信息
- 批准号:10388906
- 负责人:
- 金额:$ 3.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-21 至 2025-06-20
- 项目状态:未结题
- 来源:
- 关键词:AddressApoptosisApoptoticBCL2 geneBindingBioinformaticsBiological AssayBiologyBreast Cancer CellBreast Cancer cell lineBypassCASP3 geneCancer BiologyCell DeathCell SurvivalCellsChIP-seqChemicalsConsensusDevelopmentDisease ProgressionDoxycyclineEnhancersEpigenetic ProcessEquilibriumEstrogen ReceptorsEstrogen receptor positiveFamily memberFeedbackFibrinogenGene Expression RegulationGenetic TranscriptionGoalsHomeostasisIndividualInduction of ApoptosisInformaticsKnowledgeLeadLibrariesLigandsLiteratureMCF7 cellMalignant NeoplasmsMapsMeasuresMutationOncogenesPathway interactionsPatientsPhysiciansProteinsResearch PersonnelResistanceRiskScientistSirolimusSpecificityT47DTacrolimus Binding ProteinsTestingTherapeuticTherapeutic EffectTimeTrainingTrans-ActivatorsTransactivationTranscriptTranscription CoactivatorTranslatingUp-Regulationbasecancer cellcancer therapycancer typeexperimental studygain of functiongenome-wideinhibitorloss of functionmalignant breast neoplasmnovelnovel therapeutic interventionnovel therapeuticsoverexpressionpersonalized medicineprogramspromoterrecruitresazurinresistance mechanismresistance mutationskillstargeted cancer therapytargeted treatmenttherapy resistanttooltranscription factortranscriptome sequencingtranscriptomics
项目摘要
Abstract
Personalized targeted cancer therapy, while initially effective, leads to resistance and disease progression in
>50% of patients in as rapidly as few months after initiating therapy. These therapies directly inhibit the
catalytic and/or ligand-induced functions of the cancer driver, leading to resistance via mutational escape or
epigenetic/transcriptional bypass. To address mutational escape, recent therapeutic approaches leverage
Chemically induced Proximity (CiP): bifunctional molecules that recruit two proteins into proximity for an
emergent therapeutic effect. However, current CiP-based therapies are limited to degradation, which suffers
from similar feedback mechanisms of resistance as direct inhibition of the cancer driver. Then, we recognized
that 45% of all cancer genes are direct transcriptional regulators. Therefore, this proposal outlines a novel CiP-
enabled therapeutic paradigm to hijack cancer drivers to amplify a therapeutic transcriptional program to
directly kill cancer cells.
Specifically, the goal of this proposal is to hijack the estrogen receptor in breast cancer to drive overexpression
of pro-apoptotic factors to induce cancer cell death. First, I will systematically define the most potent pro-
apoptotic factors for transcriptional upregulation induced cell death across multiple estrogen receptor positive
breast cancer cell lines. Second, I will identify and validate transcription factors that regulate these pro-
apoptotic factors by integrating bioinformatic analysis with a high throughput transactivator inducible
recruitment screen. Finally, I will demonstrate that estrogen receptor in breast cancer can be hijacked for
targeted transcriptional upregulation by recruiting it to an endogenously tagged transcription factor regulator of
potent pro-apoptotic factors and to a targeted dCas9. Together, I will identify and demonstrate that estrogen
receptor can be inducibly recruited by CiP to a transcription factor regulator of pro-apoptotic factors to induce
breast cancer cell death.
The successful completion of the aims described will establish not only a novel therapeutic approach for
estrogen receptor positive breast cancer but also a generalizable therapeutic paradigm across multiple cancer
types with transactivating cancer drivers. Furthermore, I will identify robust candidates for subsequent
therapeutic heterobifunctional molecule development. The proposal presented also reflects my training goals of
becoming an interdisciplinary physician-scientist bridging chemical biology tools and epigenetic gene
regulation to address critical problems and needs in cancer biology and therapy.
抽象的
个性化的靶向癌症治疗虽然最初有效,但导致抗药性和疾病进展
启动治疗后几个月,> 50%的患者速度迅速。这些疗法直接抑制
癌症驱动器的催化和/或配体诱导的功能,从而通过突变逃生或
表观遗传/转录旁路。为了解决突变逃生,最近的治疗方法利用
化学诱导的接近度(CIP):双功能分子,它们将两种蛋白质募集到接近度中
紧急治疗效果。但是,当前基于CIP的疗法仅限于降解,这会受到损害
从类似的反馈机制中,抗癌驱动器的直接抑制作用。然后,我们认识到
所有癌症基因中有45%是直接转录调节剂。因此,该提议概述了一个新颖的cip-
使治疗范式劫持了劫持癌症驱动程序,以扩大治疗转录程序
直接杀死癌细胞。
具体而言,该提案的目的是劫持乳腺癌中的雌激素受体以驱动过表达
促凋亡因素诱导癌细胞死亡。首先,我将系统地定义最有效的亲
转录上调的凋亡因子诱导多个雌激素受体阳性的细胞死亡
乳腺癌细胞系。其次,我将确定并验证转录因子,以调节这些促进
通过将生物信息学分析与高吞吐量诱导剂诱导的凋亡因素
招聘屏幕。最后,我将证明乳腺癌中的雌激素受体可以被劫持
通过将其招募到内源标记的转录因子调节剂来靶向转录上调
有效的促凋亡因素和靶向DCAS9。我将一起识别并证明雌激素
受体可以通过CIP诱导地募集到促凋亡因子的转录因子调节剂,以诱导
乳腺癌细胞死亡。
所描述的目标的成功完成不仅将建立一种新颖的治疗方法
雌激素受体阳性乳腺癌,但也是多种癌症的可推广的治疗范式
具有反式激活癌症驱动因素的类型。此外,我将确定可靠的候选人
治疗性异常分子发育。提出的提案也反映了我的培训目标
成为跨学科医师科学家桥接化学生物学工具和表观遗传基因
调节以解决癌症生物学和治疗中关键问题和需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel H Kim其他文献
Allergic reaction to latex from stopper of a medication vial.
对药瓶塞上的乳胶产生过敏反应。
- DOI:
10.1097/00000539-199505000-00039 - 发表时间:
1995 - 期刊:
- 影响因子:5.7
- 作者:
S. Vassallo;T. A. Thurston;Samuel H Kim;I. Todres - 通讯作者:
I. Todres
Isolated proximal greater saphenous vein thrombosis and the risk of propagation to deep vein thrombosis and pulmonary embolism
孤立性近端大隐静脉血栓形成以及扩散为深静脉血栓和肺栓塞的风险
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:2.9
- 作者:
Samuel H Kim;N. Patel;K. Thapar;A. V. Pandurangadu;A. Bahl - 通讯作者:
A. Bahl
Samuel H Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel H Kim', 18)}}的其他基金
Hijacking cancer driver to activate cell death by chemically induced proximity
劫持癌症驱动因素通过化学诱导接近激活细胞死亡
- 批准号:
10573138 - 财政年份:2022
- 资助金额:
$ 3.92万 - 项目类别:
相似国自然基金
HIF-2α介导Müller调节神经细胞凋亡的缺血性视网膜病变机制研究
- 批准号:82371077
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
草鱼贮藏过程肌细胞凋亡对鱼肉品质的影响机制研究
- 批准号:32372397
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
RIG-I/MAVS非干扰素依赖通路诱导细胞凋亡介导七鳃鳗抗病毒的机制研究
- 批准号:32360150
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
SLC46A3参与铜耗竭介导的mPFC抑制性神经元坏死性凋亡在睡眠剥夺致术后痛慢性化的机制研究
- 批准号:82371235
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
银鲳磷酸酶A2抑制因子(PLI)对水母毒素诱导细胞凋亡的抑制作用及机制研究
- 批准号:42306114
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ceramides as Novel Mediators of Tubular Metabolic Dysfunction Driving Kidney Injury
神经酰胺作为肾小管代谢功能障碍驱动肾损伤的新型调节剂
- 批准号:
10677394 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
- 批准号:
10832871 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Molecular Origins and Evolution to Chemoresistance in Germ Cell Tumors
生殖细胞肿瘤化疗耐药的分子起源和进化
- 批准号:
10773483 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别: