Adapting machine learning methods to detect genetic loci specific to strictly defined MDD
采用机器学习方法来检测严格定义的 MDD 特有的遗传位点
基本信息
- 批准号:10378100
- 负责人:
- 金额:$ 20.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiologyBody mass indexCharacteristicsClinicalClinical assessmentsCollectionCommunitiesComplexDataData SetDetectionDiseaseFamilyFoundationsGeneticGenetic ResearchGenetic VariationGenetic studyGenotypeHeritabilityImpairmentIndividualLeadLightMachine LearningMajor Depressive DisorderMeasuresMental disordersMethodologyMethodsModelingMolecular GeneticsMorbidity - disease rateNeurotic DisordersNucleotidesOutcomePatternPerformancePhenotypePilot ProjectsProbabilityProcessPsyche structureRecordsRecurrenceResourcesRiskRisk EstimateSample SizeSamplingSeveritiesSmoking BehaviorSolidStructureSurveysTechniquesTrainingVariantWeightbiobankdisabilitydisorder riskgenetic analysisgenetic associationgenome wide association studygenome-widegenomic locusgradient boostingimprovedindexinginsightinterestlarge datasetslifetime riskmachine learning methodmachine learning predictionnovelphenotypic datapsychogeneticsrisk predictionrisk variantsample collectionstatistical and machine learningsupervised learningtheoriestraitvector
项目摘要
Abstract
This project seeks to further our understanding of the genetic influences on Major Depressive Disorder
(MDD). One approach to increasing sample sizes for molecular genetic studies of MDD and thereby increasing
power to detect genetic loci is to assess individuals using surveys that are shorter and more efficient than full
clinical assessments. This `minimal phenotyping' leads to identification of risk loci that may not be specific to
strictly defined MDD and can be associated with a variety of psychiatric phenotypes. While these discoveries are
important to understand the overall biology of complex mental and psychiatric outcomes, they offer little direct
and actionable insight into the biological underpinning of strictly defined MDD which shows increased severity,
impairment, and recurrence risk and accounts for a disproportionate impact on disability and morbidity in
comparison to liberally defined MDD. Recently, large biobanks surveying tens to hundreds of thousands of
subjects across hundreds to thousands of variables and EHR records have been become available to the
scientific community. Combining rich phenotype data with genome-wide genotyping or sequencing offers an
unprecedented opportunity to leverage these resources to advance discovery and understanding of the genetic
influences on MDD. One major challenge is the lack of uniform measures that allow assessment of strictly defined
MDD, impairment, severity, and recurrence risk. This lack of `deep phenotyping' while pragmatic in allowing the
assembly of large samples, creates challenges in accurate determinations of controls, non-specific mild cases,
and strictly defined cases. We have previously shown how machine learning (ML) analysis methods can leverage
this type of heterogeneous, broad, but light collection of information to predict and quantify risk in subjects not
deeply assessed. While there is significant room for improvement in these predictions, the resulting effective
sample size and power to detect specific liability loci increased dramatically when this method was applied. In
Aim 1, we plan to evaluate 2 families of ML methods that can be used to predict unmeasured and specific strictly
defined MDD risk. In Aim 2, we propose to use these predictions of risk in genetic association analyses to detect
common genetic variation that influences risk specific to strictly defined MDD. Finally, we will make our biobank
adapted ML method pipeline available to the broader psychiatric genetics research community which is expected
to improve power and loci detection for other psychiatric disorders.
抽象的
该项目旨在进一步理解对重大抑郁症的遗传影响
(MDD)。增加样本量的一种方法,用于MDD的分子遗传研究,从而增加
检测遗传基因座的能力是使用比完整的调查评估个体
临床评估。这种“最小表型”导致了风险基因座的识别,这可能不是特定于
严格定义的MDD,可以与各种精神病表型有关。虽然这些发现是
重要的是要了解复杂的心理和精神病结果的整体生物学,它们几乎没有直接
以及对严格定义的MDD生物学基础的可行见解,该基础表明严重程度增加,
损害,复发风险以及对残疾和发病率的不成比例的影响
与自由定义的MDD进行比较。最近,大型生物库对数十万人进行了调查
数百至数千个变量和EHR记录的受试者已获得
科学界。将丰富的表型数据与全基因组的基因分型或测序相结合提供
空前的机会来利用这些资源来提高发现和理解遗传
对MDD的影响。一个主要挑战是缺乏允许评估严格定义的统一措施
MDD,损害,严重性和复发风险。这种缺乏“深度表型”,同时务实地允许
组装大型样品,在准确确定对照,非特异性轻度病例的准确确定中构成挑战
并严格定义的情况。我们以前已经展示了机器学习(ML)分析方法如何利用
这种类型的异构,广泛但信息收集的信息收集,以预测和量化受试者的风险
深入评估。尽管这些预测有很大的改进空间,但最终有效
应用此方法时,样本量和功率检测特定责任基因座的功率急剧增加。在
目的1,我们计划评估2个可用于严格预测未测量和特定特定方法的ML方法家族
定义的MDD风险。在AIM 2中,我们建议在遗传关联分析中使用这些风险预测来检测
常见的遗传变异会影响严格定义的MDD的风险。最后,我们将成为我们的生物库
适用于更广泛的精神遗传学研究社区的改编的ML方法管道可以预期
改善其他精神疾病的功率和基因座检测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRADLEY Todd WEBB其他文献
BRADLEY Todd WEBB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRADLEY Todd WEBB', 18)}}的其他基金
Adapting machine learning methods to detect genetic loci specific to strictly defined MDD
采用机器学习方法来检测严格定义的 MDD 特有的遗传位点
- 批准号:
10196078 - 财政年份:2021
- 资助金额:
$ 20.84万 - 项目类别:
Project 5 - Genetic architecture of alcohol use disorder using cross-trait genetic correlations and public next-generation sequencing studies
项目 5 - 使用跨性状遗传相关性和公共下一代测序研究的酒精使用障碍的遗传结构
- 批准号:
10429957 - 财政年份:2014
- 资助金额:
$ 20.84万 - 项目类别:
Project 5 - Genetic architecture of alcohol use disorder using cross-trait genetic correlations and public next-generation sequencing studies
项目 5 - 使用跨性状遗传相关性和公共下一代测序研究的酒精使用障碍的遗传结构
- 批准号:
10633321 - 财政年份:2014
- 资助金额:
$ 20.84万 - 项目类别:
相似国自然基金
mRNA反式调控基因转录的机制及其生物学功能
- 批准号:32330018
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
增材制造锌镁合金复合椎间融合器降解调控机制与生物学效应研究
- 批准号:52301302
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
秸秆还田下玉/豆间作系统的生物固氮效应及微生物学机制
- 批准号:32301962
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Epigenetically regulated stemness program and stem cell niche as targets in pediatric DIPG
表观遗传调控的干细胞程序和干细胞生态位作为儿科 DIPG 的目标
- 批准号:
10635435 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别:
Allogeneic BAFF Ligand Based CAR T Cells as a Novel Therapy for B Cell Malignancies
基于同种异体 BAFF 配体的 CAR T 细胞作为 B 细胞恶性肿瘤的新疗法
- 批准号:
10698759 - 财政年份:2023
- 资助金额:
$ 20.84万 - 项目类别: