Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
基本信息
- 批准号:10206237
- 负责人:
- 金额:$ 48.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-18 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBenefits and RisksCharacteristicsClinical DataComplexComputer softwareComputerized Medical RecordConfidence IntervalsCountryDataData CollectionData SetDetectionDimensionsE-learningEarly DiagnosisEffectivenessElectronic Health RecordEnsureEpidemiologyEstimation TechniquesEventFrequenciesGoalsHealthHealthcareHeterogeneityInformation SystemsInfrastructureInterventionKnowledgeLearningLinkMachine LearningMeasuresMethodologyMethodsModernizationMonitorOutcomePatient-Focused OutcomesPatientsPharmacodynamicsPopulationPopulation SurveillanceProceduresPublic HealthRecordsReproducibilityResearchResearch MethodologyResearch PersonnelSafetySentinelSignal TransductionStandardizationStatistical MethodsStreamStructural ModelsSubgroupSurveillance ProgramSystemTechniquesTestingTimeTreatment outcomeUpdatebaseclinical carecomparative treatmentdata streamsflexibilityhigh dimensionalityimprovedinterestmachine learning methodnational surveillancenovelopen sourcepatient populationpatient subsetsrisk minimizationsoftware developmentsurveillance datatooltreatment effectuser-friendly
项目摘要
SUMMARY
The modernization and standardization of clinical care information systems is creating large networks of
linked electronic health records (EHR) that capture key treatments and select patient outcomes for
millions of patients throughout the country. The observational data emerging from these systems
provide an unparalleled opportunity to learn about the effectiveness of existing and novel treatments,
and to monitor potential safety issues that may arise when interventions are used in broad patient
populations. However, observational clinical data have exposures that are driven by many factors and
therefore aggressive adjustment is needed to remove as much confounding bias as possible in order to
make attribution regarding select exposures. The field of machine learning provides a powerful
collection of data-driven approaches for performing flexible, thorough confounding adjustment, but
performing reliable statistical inference is particularly challenging when these techniques are used as
part of the analytic strategy. We propose to advance reproducible research methods by developing and
illustrating novel targeted learning tools that leverage the flexibility of machine learning methods to
detect and characterize health effect signals using large-scale EHR data.
Specifically, we will first develop techniques for making efficient, statistically valid and robust inference
for treatment effects using state-of-the-art machine learning tools. We will also develop online learning
techniques to make such inference in the context of streaming EHR data. Methodological advances will
enable us to formulate a formal, rigorous and practical framework for conducting continuous, effective
and reliable surveillance for safety endpoints. Finally, we will develop statistical approaches for
incorporating prior information -- including demographic, epidemiologic or pharmacodynamic
knowledge, for example -- to improve health effect estimation and inference when the health outcome
of interest is rare and the statistical problem is thus difficult, as often occurs in safety surveillance.
The ultimate goal of the proposed research is to enable biomedical researchers and public health
regulators to carefully monitor and protect the health of the public by allowing them to more effectively
and more reliably detect critical health effect signals that may be contained in population-scale EHR
data.
概括
临床护理信息系统的现代化和标准化正在创建大型网络
链接的电子健康记录 (EHR),可捕获关键治疗并选择患者治疗结果
全国数百万患者。从这些系统中产生的观测数据
提供无与伦比的机会来了解现有和新型疗法的有效性,
并监测在广泛患者中使用干预措施时可能出现的潜在安全问题
人口。然而,观察性临床数据的暴露是由许多因素驱动的,
因此,需要积极调整以消除尽可能多的混杂偏差,以便
对选定的曝光进行归因。机器学习领域提供了强大的
收集数据驱动的方法来执行灵活、彻底的混杂调整,但是
当这些技术用作
分析策略的一部分。我们建议通过开发和推广可重复的研究方法
说明新颖的有针对性的学习工具,利用机器学习方法的灵活性
使用大规模 EHR 数据检测和表征健康影响信号。
具体来说,我们将首先开发进行高效、统计上有效且稳健的推理的技术
使用最先进的机器学习工具来了解治疗效果。我们还将开发在线学习
在流式 EHR 数据的背景下进行此类推断的技术。方法论的进步将
使我们能够制定一个正式、严格和实用的框架,以开展持续、有效的
以及对安全终点的可靠监测。最后,我们将开发统计方法
纳入先前信息——包括人口统计、流行病学或药效学
例如,当健康结果出现时,改善健康影响估计和推断
感兴趣的人很少,因此统计问题很困难,就像安全监督中经常发生的那样。
拟议研究的最终目标是使生物医学研究人员和公共卫生
监管机构通过允许他们更有效地仔细监控和保护公众的健康
并更可靠地检测人口规模 EHR 中可能包含的关键健康影响信号
数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Carone其他文献
Marco Carone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Carone', 18)}}的其他基金
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
9816009 - 财政年份:2019
- 资助金额:
$ 48.62万 - 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
10463566 - 财政年份:2019
- 资助金额:
$ 48.62万 - 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
9979940 - 财政年份:2019
- 资助金额:
$ 48.62万 - 项目类别:
Statistical Methods for Incorporating Machine Learning Tools in Inference and Large-Scale Surveillance using Electronic Medical Records Data
使用电子病历数据将机器学习工具纳入推理和大规模监控的统计方法
- 批准号:
10645177 - 财政年份:2019
- 资助金额:
$ 48.62万 - 项目类别:
相似海外基金
Using Informatics to Evaluate and Predict Cataract Surgery Impact on Alzheimer's Disease and Related Dementias and Mild Cognitive Impairment Outcomes
利用信息学评估和预测白内障手术对阿尔茨海默病和相关痴呆症以及轻度认知障碍结果的影响
- 批准号:
10688255 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
Using Informatics to Evaluate and Predict Cataract Surgery Impact on Alzheimer's Disease and Related Dementias and Mild Cognitive Impairment Outcomes
利用信息学评估和预测白内障手术对阿尔茨海默病和相关痴呆症以及轻度认知障碍结果的影响
- 批准号:
10525214 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
Benefits and Harms of Long-term Osteoporosis Pharmacotherapy: Impact of Treatment Length, Type, Switching, and Holidays
长期骨质疏松症药物治疗的好处和坏处:治疗长度、类型、转换和假期的影响
- 批准号:
10515946 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
University of Illinois at Chicago KPMP CKD Recruitment Site
伊利诺伊大学芝加哥分校 KPMP CKD 招聘网站
- 批准号:
10490619 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别:
University of Illinois at Chicago KPMP CKD Recruitment Site
伊利诺伊大学芝加哥分校 KPMP CKD 招聘网站
- 批准号:
10701830 - 财政年份:2022
- 资助金额:
$ 48.62万 - 项目类别: