A Precision Medicine Approach to Target Engagement for Emotion Regulation

一种针对情绪调节的精准医学方法

基本信息

  • 批准号:
    10371341
  • 负责人:
  • 金额:
    $ 16.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Emotion dysregulation is a transdiagnostic maintenance factor involved in a wide array of costly and debilitating psychiatric disorders. Although numerous full-model behavioral health treatments have been designed to improve patients’ emotion regulation capacities, these treatments consist of multiple components, making it difficult to discern which are active mechanisms leading to reductions in negative emotion intensity. Further, it is unclear whether the delivery of these evidence-based components can be tailored to the individual patient. The proposed Mentored Patient-Oriented Research Career Development Award (K23) is a four-year plan to support the applicant’s long-term career goal of becoming a clinical scientist with expertise in (1) identifying active mechanisms of emotion regulation interventions for psychopathology, (2) tailoring these interventions to individual patients, and (3) developing scalable interventions for wide dissemination. The applicant’s training and career thus far are aligned with these long-term goals. Throughout his graduate work, he conducted studies testing emotion regulation mechanisms in transdiagnostic samples and used this information to explore for whom these mechanisms were most impactful. The immediate goals of the K23 award are for the applicant to become skilled at intensive longitudinal experimental designs to disaggregate between- from within-person mechanisms of change and enhance his proficiency in conducting and analyzing multimethod assessments of emotion regulation. This proposal uses a two-phase approach to address these goals. In line with an experimental therapeutics approach, the goal of Phase 1 is to compare the effects of teaching one or three emotion regulation skills on daily changes in negative emotion intensity among participants with elevated emotion dysregulation. The first goal of Phase 2 is to apply a personalization algorithm based on Phase 1 data to an independent sample to determine which baseline participant characteristics predict greater reductions in negative emotion intensity in each experimental condition. The second goal of Phase 2 is to compare the effects of teaching participants emotion regulation skill(s) according to their optimal or non-optimal delivery condition, based on the personalization algorithm. The training plan closely matches the proposed research and long-term goals, including (a) developing advanced understanding in statistical methods to test between- and within-person mechanisms of emotion regulation interventions, (b) gaining proficiency in applying novel personalization algorithms, and (c) enhancing expertise in the implementation and analysis of multimethod assessments of emotion regulation skills. The broader aim of this research and training is to address the need for more efficient, personalized, and scalable interventions for transdiagnostic psychiatric conditions, in line with the NIMH strategic plan. This study will answer important theoretical and practical questions about the efficacy of different emotion regulation mechanisms on clinical outcomes that may promote the development of more targeted and disseminable interventions.
情绪失调是一个跨诊断维持因素,涉及一系列昂贵且复杂的疾病。 尽管已经有许多全模式的行为健康治疗。 这些治疗旨在提高患者的情绪调节能力,由多个部分组成, 使得很难辨别哪些是导致负面情绪强度降低的主动机制。 此外,尚不清楚这些基于证据的组件的交付是否可以针对个人进行定制。 拟议的以患者为导向的研究职业发展奖(K23)为期四年。 计划支持申请人成为具有以下方面专业知识的临床科学家的长期职业目标 确定精神病理学情绪调节干预的主动机制,(2)调整这些 (3) 制定可扩展的干预措施以进行广泛传播。 申请人迄今为止的培训和职业生涯与他的整个研究生工作的长期目标一致。 他进行了研究,测试跨诊断样本中的情绪调节机制,并使用了该机制 探索这些机制对谁最有影响力的信息 K23 的近期目标。 奖项旨在奖励申请人熟练进行密集的纵向实验设计以分解 人与人之间的变革机制,并提高他进行和分析的能力 该提案采用两阶段方法来解决这些问题。 根据实验性治疗方法,第一阶段的目标是比较以下药物的效果。 教授一到三种关于负面情绪强度日常变化的情绪调节技巧 第二阶段的第一个目标是应用个性化。 基于第一阶段数据的算​​法来确定独立样本的基线参与者 特征预测在每个实验条件下负面情绪强度会更大程度地减少。 第二阶段的第二个目标是比较教授参与者情绪调节技能的效果 根据个性化算法调整其最佳或非最佳交付条件。 与拟议的研究和长期目标密切匹配,包括(a)发展先进的理解 用统计方法来测试人与人之间的情绪调节干预机制,(b) 熟练应用新颖的个性化算法,以及(c)增强以下领域的专业知识: 情绪调节技能多方法评估的实施和分析。 研究和培训的目的是满足对更有效、个性化和可扩展干预措施的需求 这项研究将回答重要的跨诊断精神疾病问题,符合 NIMH 战略计划。 不同情绪调节机制对临床疗效的理论和实践问题 可能促进制定更有针对性和可传播的干预措施的成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Wayne Southward其他文献

Matthew Wayne Southward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Wayne Southward', 18)}}的其他基金

A Precision Medicine Approach to Target Engagement for Emotion Regulation
一种针对情绪调节的精准医学方法
  • 批准号:
    10543824
  • 财政年份:
    2022
  • 资助金额:
    $ 16.86万
  • 项目类别:

相似海外基金

A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
  • 批准号:
    10727940
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
  • 批准号:
    10741022
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
  • 批准号:
    10585301
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
Integrating liquid biopsy-based epigenetic and imaging modalities to evaluate disease response in multiple myeloma
整合基于液体活检的表观遗传学和成像方式来评估多发性骨髓瘤的疾病反应
  • 批准号:
    10651370
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
  • 批准号:
    10576701
  • 财政年份:
    2023
  • 资助金额:
    $ 16.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了