Genomic Regulation and Translational Potential of a Novel Smooth Muscle Cell-Derived Cell Type in Atherosclerosis
动脉粥样硬化中新型平滑肌细胞衍生细胞类型的基因组调控和转化潜力
基本信息
- 批准号:10371660
- 负责人:
- 金额:$ 13.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-20 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvisory CommitteesApoptosisApplications GrantsAreaArterial Fatty StreakAtherosclerosisAttenuatedAwardBiochemicalCardiovascular DiseasesCell Differentiation processCell LineageCell physiologyCellsComplexDataDevelopmentDisease ProgressionDisease regressionEZH2 geneEndothelial CellsEpigenetic ProcessEquilibriumFibroblastsGene ExpressionGenesGenomicsHumanImmunoprecipitationInflammasomeInflammationInflammatoryInflammatory ResponseInvestigationLeadershipLesionLinkLiver X ReceptorManuscriptsMediatingMolecularMolecular TargetMusNecrosisPathway interactionsPhasePhenotypePlayPreparationPreventionProgram DevelopmentProliferatingRXRRegulationRepressionResearchResearch PersonnelResearch TrainingRetinoic Acid ReceptorRoleSignal TransductionSmooth Muscle MyocytesTechniquesTestingThickTimeTretinoinVascular Smooth MuscleWorkadvanced diseaseantagonistatheroprotectivecareercareer developmentcell typecellular targetingdesignepigenetic regulationgene repressionhistological stainsinhibitorinsightmacrophagemonocytemouse modelnovelpromoterresponsesingle-cell RNA sequencingskillsstem cell biomarkersstem cellstransdifferentiationtranslational potentialwestern diet
项目摘要
Smooth muscle cells (SMCs) play major roles in atherosclerosis, a leading cause of cardiovascular disease
(CVD). SMCs can be beneficial or detrimental in atherosclerosis, depending on their transdifferentiation
trajectories into atheroprotective (e.g., fibroblast-like cell) or atherogenic (e.g., macrophage) cell types. My recent
work, combining an SMC-lineage tracing murine model and single-cell RNA sequencing (scRNA-seq), revealed
a novel SMC-derived cell type, “SEM” cell (termed because of co-expression of stem cell, endothelial cell, and
monocyte markers). SMC-derived SEM-like cells have also been identified by other groups. SEM cells highly
express genes related to proatherogenic functions (e.g., inflammation) and may be the precursors for other SMC-
derived cell types (e.g., fibrochondrocyte, macrophage), through which SEM cells may modulate vulnerability
and stability of atherosclerotic lesions. My proof of principle studies in mouse models showed that activation of
retinoic acid (RA) signaling inhibited SMC to SEM cell transition, reduced atherosclerotic burden, and promoted
fibrous cap stability in atherosclerosis. These findings suggest the following central hypotheses: 1) activation of
RA signaling attenuates SMC to SEM cell transition by directly suppressing expression of key SEM cell marker
genes; 2) activation of RA signaling represses proatherogenic functions (e.g., inflammation) of SEM cells during
disease progression; 3) activation of RA signaling is beneficial in established atherosclerosis and accelerates
disease regression by promoting SEM cell atheroprotective functions and differentiation trajectories while
suppressing atheroprone features of SEM cells. These hypotheses will be addressed through the following aims:
Aim 1 (K99 phase) will determine if RA signaling inhibits the SMC to SEM cell transition via RAR/RXR/EZH2-
mediated repression of SEM cell marker genes; Aim 2 (K99 phase) will determine if RA signaling attenuates
SEM cell inflammation during atherosclerosis progression through LXR-mediated repression of inflammatory
genes; Aim 3 (R00 phase) will apply SMC-lineage tracing and atherosclerosis regression mouse models to
determine if RA signaling drives differentiation trajectories of SEM cells towards atheroprotective rather than
atherogenic cell types in advanced atherosclerosis (Aim 3A) and promotes SEM cell apoptosis and subsequent
resorption via macrophage efferocytosis during disease regression (Aim 3B). The proposed studies will be
accomplished in the setting of a comprehensive career development program designed to provide the candidate
with scientific and leadership skills that facilitate the successful transition to an independent investigator in the
field of atherosclerotic CVD. At the K99 phase, the candidate will continue to obtain expertise in molecular,
cellular, and biochemical techniques as well as SMC-lineage tracing and mechanistic and functional investigation
of RA signaling and SEM cells in atherosclerosis mouse models for progressing, advanced, and regressing
lesions. The expert advisory team will guide the candidate in research training, manuscript and grant proposal
preparation, and ultimately in the transition to an independence career over the course of the award period.
平滑肌细胞(SMC)在Attrorcolreosis中起主要作用,这是心血管疾病的主要原因
(CVD)。
轨迹进入动脉保护性(例如成纤维细胞样细胞)或动脉粥样硬化(例如巨噬细胞)。
工作,结合了SMC-Linege追踪鼠模型和单细胞RNA测序(SCRNA-SEQ),揭示了
一种新型的SMC衍生细胞类型“ SEM”细胞(称为干细胞,内皮细胞的共表达,以及
单核细胞标记)
与正确的功能(例如炎症)有关的表达基因,可能是其他SMC-的前体
派生的细胞类型(例如纤维软骨细胞,巨噬细胞),SEM细胞可能会模块脆弱性
和动脉粥样硬化病变的稳定性。
视黄酸(RA)信号传导抑制了SMC的半化,减轻了动脉粥样硬化负担并促进
动脉粥样硬化中的纤维帽稳定性。
RA信号通过直接抑制关键SEM细胞标记的表达来减轻SMC到SEM细胞的过渡
基因; 2)RA信号传导的激活抑制了SEM细胞的促进功能(例如,炎症)
疾病进展; 3)RA信号的激活对已建立的动脉粥样硬化是有益的
通过促进疾病回归
支持SEM细胞的动脉op舌特征。
AIM 1(K99相)将确定RA信号传导是否抑制SMC通过RAR/RAR/RXR/EZH2-销售过渡
SEM细胞标记基因的介导的AIM 2(K99相)将确定RA信号是否减弱
通过LXR介导的炎症抑制在动脉粥样硬化进展过程中的SEM细胞炎症
基因; AIM 3(R00阶段)将应用SMC-LINEGE追踪和动脉粥样硬化回归小鼠模型
确定RA信号传导是否驱动SEM细胞的区分轨迹向朝向动脉保护区而不是
晚期动脉粥样硬化(AIM 3A)中的动脉粥样细胞类型,并促进SEM细胞凋亡,随后
通过疾病回归期间的巨噬细胞肿瘤病(AIM 3B)。
在旨在为候选人提供的全面职业发展计划的设置中完成
具有科学和领导能力,促进成功过渡到独立研究者
动脉粥样硬化的CVD领域。
蜂窝和生化技术作为劳格跟踪以及机械和功能投资
RA信号传导和半度
病变。
在整个奖项期间,准备向独立职业过渡到独立职业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huize Pan其他文献
Huize Pan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huize Pan', 18)}}的其他基金
Genomic Regulation and Translational Potential of a Novel Smooth Muscle Cell-Derived Cell Type in Atherosclerosis
动脉粥样硬化中新型平滑肌细胞衍生细胞类型的基因组调控和转化潜力
- 批准号:
10553197 - 财政年份:2022
- 资助金额:
$ 13.08万 - 项目类别:
相似海外基金
Using natural killer cells to prevent breast cancer metastases
使用自然杀伤细胞预防乳腺癌转移
- 批准号:
10591362 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
Targeting proteoglycan-mediated signaling in Ewing sarcoma
尤文肉瘤中靶向蛋白多糖介导的信号传导
- 批准号:
10591979 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
Elucidating anti-angiogenic tyrosine kinase inhibitor-induced vascular dysfunction
阐明抗血管生成酪氨酸激酶抑制剂诱导的血管功能障碍
- 批准号:
10570393 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
Beta Cell Heterogeneity in the Interferon Alpha Response
干扰素α反应中的β细胞异质性
- 批准号:
10751684 - 财政年份:2023
- 资助金额:
$ 13.08万 - 项目类别:
Regulation of endothelial cell phosphatidylserine in thrombosis
血栓形成中内皮细胞磷脂酰丝氨酸的调节
- 批准号:
10541214 - 财政年份:2022
- 资助金额:
$ 13.08万 - 项目类别: