Acellular composite hydrogel scaffolds for volumetric muscle regeneration
用于体积肌肉再生的脱细胞复合水凝胶支架
基本信息
- 批准号:10372733
- 负责人:
- 金额:$ 16.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAnastomosis - actionAnimal ModelAnimalsArchitectureAutologous TransplantationBenchmarkingBiocompatible MaterialsBiological AssayBiomimeticsBiopolymersBlood VesselsCellsCellular InfiltrationCicatrixCircular Dichroism SpectroscopyClinicalCollagenComplementCosmeticsDefectDevelopmentElectron MicroscopyEndothelial CellsExcisionFutureGenerationsGoalsGoldGrowthHealthHistologicHistologyHumanHydrogelsImplantIn SituIn VitroInfiltrationInflammationInjuryInvestigationIsometric ExerciseLeadLeucocytic infiltrateLongitudinal StudiesMalignant NeoplasmsMeasuresMechanicsMediatingMicrofabricationMusMuscleMuscle ContractionMuscle functionMyogeninMyosin ATPaseNatural regenerationOutcomeOutputPECAM1 genePatientsPeptidesPhenotypePoriferaProceduresProductionQuality of lifeRecovery of FunctionRecruitment ActivityResidual stateSignal TransductionSiteSkeletal MuscleStructureTechniquesTestingTissue EngineeringTissuesTraumatic injuryVWF geneVascular Endothelial Growth FactorsVascular regenerationVascularizationVehicle crashWeight-Bearing stateWorkangiogenesisbasecombat injurydesignfunctional outcomesgraft functionhydrogel scaffoldin vivoinfrared spectroscopyinjuredinnovationmacrophagemimicrymouse modelmuscle regenerationnanofiberneovascularizationnerve supplynestin proteinpreclinical studyreconstructionrecruitrepairedrestorationsatellite cellscaffoldself assemblysuccesstibialis anterior muscletissue regenerationtissue repairtraumatic eventvascular contributionsvolumetric muscle losswound
项目摘要
Project Summary
There are almost 5 million reconstructive procedures performed annually as a result of traumatic injury, cancer
ablation, cosmetic procedures, or combat injuries. The destruction or removal of large amounts of skeletal
muscle, termed volumetric muscle loss (VML), resulting from traumatic events such as car crashes or combat
injuries, represents a significant health concern. Skeletal muscle is highly vascularized, and relies on adequate
infiltration of blood vessels to repair and regenerate. The gold standard for VML repair is autologous grafting,
and is limited by reduced functional outcomes and inadequate host-mediated graft revascularization. Current
biomaterial-based tissue engineered approaches towards the repair of skeletal muscle tissue after VML rely on
passive neovascularization from the host, as opposed to actively recruiting vascular networks to accompany
satellite cell infiltration during repair. As such, there remains a significant need to develop materials that will
actively stimulate the development of vasculature that will guide organized and aligned skeletal muscle tissue
regeneration. We hypothesize that scaffolds that stimulate the rapid creation of a new vasculature and aligned
muscle tissue will significantly enhance skeletal muscle repair in VML injuries. To test this hypothesis, we will
create a class of biodegradable composite scaffolds that will be implanted into VML injuries to enable the
recruitment of endothelial cells and satellite cells. As such, the objective is to create a composite material that
promotes in situ regeneration of mature functional muscle tissue. To fabricate these scaffolds, collagen sponges
with defined, anisotropic architectures will be fabricated and embedded with angiogenic self-assembling peptide
hydrogels, termed SLan (Aim 1). Assessment of the mechanics of scaffolds will complement in vitro analyses of
cellular infiltration and compatibility to define material parameters that will induce aligned vascularized skeletal
muscle tissue. Scaffolds comprised of collagen, SLan, or composites will then be implanted into a murine model
of VML to assess the contribution of each material to enhance VML repair (Aim 2). Particular emphasis will be
placed on the ability of these scaffolds to support functional recovery as measured by muscular contraction in
longitudinal studies. Histologic assessments will characterize i) the cellular infiltrate and the contribution of
aligned scaffolds to guide organized skeletal muscle tissue growth, ii) the modulation of in situ neovascularization
and supporting structures, and iii) changes in inflammation. Ultimately, we aim to address two major limitations
within skeletal muscle tissue regeneration: i) inadequate vascularization of constructs in situ, and ii) the lack of
organized alignment of nascent myofibers during repair of VML injuries; both factors known to inhibit functional
recovery. These outcomes will result in the creation of a new class of composite materials to functionally drive
cellular infiltration with hydrogels that are specifically designed to recruit specific supporting structures necessary
for tissue regeneration and repair.
项目概要
每年有近 500 万例因创伤、癌症而进行的重建手术
消融、整容手术或战斗受伤。破坏或移除大量骨骼
肌肉,称为体积肌肉损失(VML),由车祸或战斗等创伤事件引起
伤害,代表着重大的健康问题。骨骼肌是高度血管化的,并且依赖于足够的
渗透血管以修复和再生。 VML修复的金标准是自体移植,
并且受到功能结果降低和宿主介导的移植物血运重建不足的限制。当前的
基于生物材料的组织工程方法修复 VML 后的骨骼肌组织依赖于
来自宿主的被动新生血管形成,而不是主动招募血管网络来伴随
修复过程中卫星细胞浸润。因此,仍然迫切需要开发能够
积极刺激脉管系统的发育,引导骨骼肌组织的组织和排列
再生。我们假设支架可以刺激新血管系统的快速创建并对齐
肌肉组织将显着增强 VML 损伤中的骨骼肌修复。为了检验这个假设,我们将
创建一类可生物降解的复合支架,将其植入 VML 损伤中,以实现
内皮细胞和卫星细胞的募集。因此,我们的目标是创造一种复合材料
促进成熟功能性肌肉组织的原位再生。为了制造这些支架,胶原蛋白海绵
将制造具有明确的各向异性结构并嵌入血管生成自组装肽
水凝胶,称为 SLan(目标 1)。支架力学评估将补充体外分析
细胞渗透和相容性来定义材料参数,从而诱导血管化骨骼对齐
肌肉组织。由胶原蛋白、SLan 或复合材料组成的支架将被植入小鼠模型中
VML 来评估每种材料对增强 VML 修复的贡献(目标 2)。将特别强调的是
放置在这些支架支持功能恢复的能力上,通过肌肉收缩来测量
纵向研究。组织学评估将表征 i) 细胞浸润和贡献
对齐支架以引导有组织的骨骼肌组织生长,ii)原位新血管形成的调节
和支撑结构,以及 iii) 炎症的变化。最终,我们的目标是解决两个主要限制
在骨骼肌组织再生中:i)原位构建体的血管化不足,ii)缺乏
VML 损伤修复过程中新生肌纤维的组织排列;已知这两个因素都会抑制功能
恢复。这些成果将导致创建一类新型复合材料,以实现功能驱动
细胞渗透水凝胶,专门设计用于招募必要的特定支撑结构
用于组织再生和修复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan M. Grasman其他文献
Jonathan M. Grasman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan M. Grasman', 18)}}的其他基金
Acellular composite hydrogel scaffolds for volumetric muscle regeneration
用于体积肌肉再生的脱细胞复合水凝胶支架
- 批准号:
10835331 - 财政年份:2022
- 资助金额:
$ 16.57万 - 项目类别:
Acellular composite hydrogel scaffolds for volumetric muscle regeneration
用于体积肌肉再生的脱细胞复合水凝胶支架
- 批准号:
10555267 - 财政年份:2022
- 资助金额:
$ 16.57万 - 项目类别:
Roles of vascularization and innervation in regenerative medicine
血管化和神经支配在再生医学中的作用
- 批准号:
9190519 - 财政年份:2016
- 资助金额:
$ 16.57万 - 项目类别:
Designing Fibrin Microthread Scaffolds for Skeletal Muscle Regeneration
设计用于骨骼肌再生的纤维蛋白微丝支架
- 批准号:
8524360 - 财政年份:2013
- 资助金额:
$ 16.57万 - 项目类别:
Designing Fibrin Microthread Scaffolds for Skeletal Muscle Regeneration
设计用于骨骼肌再生的纤维蛋白微丝支架
- 批准号:
8669728 - 财政年份:2013
- 资助金额:
$ 16.57万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Ectopic Olfactory Receptor Guided Facial Nerve Regeneration
异位嗅觉受体引导面神经再生
- 批准号:
10575837 - 财政年份:2023
- 资助金额:
$ 16.57万 - 项目类别:
Acellular composite hydrogel scaffolds for volumetric muscle regeneration
用于体积肌肉再生的脱细胞复合水凝胶支架
- 批准号:
10835331 - 财政年份:2022
- 资助金额:
$ 16.57万 - 项目类别:
Acellular composite hydrogel scaffolds for volumetric muscle regeneration
用于体积肌肉再生的脱细胞复合水凝胶支架
- 批准号:
10555267 - 财政年份:2022
- 资助金额:
$ 16.57万 - 项目类别:
Notch in Angiogenesis and Vascular Biology
血管生成和血管生物学方面的Notch
- 批准号:
8512781 - 财政年份:2012
- 资助金额:
$ 16.57万 - 项目类别: