Magnetic nanocomplexes-induced immunomodulation for fracture healing
磁性纳米复合物诱导的免疫调节促进骨折愈合
基本信息
- 批准号:10372632
- 负责人:
- 金额:$ 19.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-10 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAcuteAdoptedAreaBiochemicalBiocompatible MaterialsBiomechanicsBone RegenerationBone ResorptionCellsChromatinChronicCuesCytoskeletonDefectEndotheliumEngineeringExhibitsExogenous FactorsExposure toF-ActinFosteringFractureFunctional disorderG ActinGene ExpressionGenesHDAC3 geneImmune responseInfiltrationInflammationInflammatory ResponseInjuryKineticsLeadLinkMacrophage ActivationMagnetismMetabolicMethodologyMethodsModelingMorphologyMultipotent Stem CellsMusNatural regenerationNuclearNuclear TranslocationOrgan failureOsteogenesisPathogenesisPathologyPeptidesPharmaceutical PreparationsPhenotypeProcessQuality of lifeRegenerative MedicineResearchRoleSignal TransductionSiteSpecificitySurfaceTLR4 geneTNF geneTestingTherapeuticTherapeutic InterventionTight JunctionsTimeTractionTranscriptional RegulationTraumaTraumatic injuryUp-RegulationWorkage relatedbasebonebone fracture repairbone healingcancer imagingclinically translatablecyclooxygenase 2densitydesigndiagnostic valuedisabilityimmunomodulatory therapiesimmunoregulationinflammatory modulationinsightiron oxidemacrophagemagnetic fieldnanocomplexesnanomaterialspolymerizationpreventregenerative therapysuccesssystemic toxicitytissue regenerationtranscription factoruptakewound healing
项目摘要
Non-healing fractures are a cause of severe disability and have devastating effects on the quality of life.
Currently, there are no reliable first-line therapies that stimulate healthy bone formation and prevent nonunion.
There is a growing body of evidence supporting the indispensable role of macrophages in fracture healing.
Also, macrophage dysfunction is a critical component in the pathogenesis of non-healing or poorly healing
fractures. Immunomodulatory strategies that apply biochemical factors are gaining traction to regulate
macrophage phenotypes. However, they have limited success due to complications with specificity, efficacy,
and systemic toxicity.
Here we propose to develop a magnetic iron-oxide nanocomplexes (MNC)-based therapy for promoting
fracture healing. The cytoskeletal dynamics of macrophages are intricately linked to their inflammatory
response. Our studies confirmed that the cytoskeletal dynamics of macrophages are determined by their
phenotype. Studies also show that mere manipulation of cytoskeletal dynamics using physical cues, without
any exogenous factors, is shown to transform macrophage phenotype. This phenotype modulation is due to
the nuclear translocation of the transcription factor MRTF-A, and changes in chromatin compaction caused by
cytoplasmic-to-nuclear redistribution of histone deacetylase-3 (HDAC3). We hypothesize that intracellular
magnetic force can elicit transcriptional control of macrophage phenotype and promote fracture healing via
MRTF-A release and HDAC3 redistribution.
In SA1, we will engineer magnetic nanocomplexes for targeted internalization and mechanistically
elucidate intracellular force-induced modulation of the cytoskeleton and corresponding change in macrophage
phenotype. In SA2, we will validate macrophage targeting of MNC and elucidate their therapeutic potential in a
murine critical-sized femoral defect. The proposed research will be a paradigm shift in wound healing and will
also provide crucial insights into the mechanobiology of macrophages that are valuable for diagnostic and
therapeutic interventions.
不愈合的骨折会导致严重残疾,并对生活质量产生破坏性影响。
目前,没有可靠的一线疗法可以刺激健康的骨形成并预防骨不连。
越来越多的证据支持巨噬细胞在骨折愈合中不可或缺的作用。
此外,巨噬细胞功能障碍是不愈合或愈合不良的发病机制的关键组成部分
骨折。应用生化因子的免疫调节策略正在获得越来越多的关注来调节
巨噬细胞表型。然而,由于特异性、有效性、
和全身毒性。
在这里,我们建议开发一种基于磁性氧化铁纳米复合物(MNC)的疗法,以促进
骨折愈合。巨噬细胞的细胞骨架动力学与其炎症密切相关
回复。我们的研究证实,巨噬细胞的细胞骨架动力学是由它们的
表型。研究还表明,仅使用物理线索操纵细胞骨架动力学,无需
任何外源因素都会改变巨噬细胞表型。这种表型调节是由于
转录因子 MRTF-A 的核转位,以及由以下原因引起的染色质压缩的变化
组蛋白脱乙酰酶 3 (HDAC3) 从细胞质到细胞核的重新分布。我们假设细胞内
磁力可以引发巨噬细胞表型的转录控制并通过
MRTF-A 版本和 HDAC3 重新分发。
在 SA1 中,我们将设计磁性纳米复合物,以实现靶向内化和机械化
阐明细胞内力诱导的细胞骨架调节和巨噬细胞的相应变化
表型。在 SA2 中,我们将验证 MNC 的巨噬细胞靶向性并阐明其治疗潜力
小鼠临界尺寸股骨缺损。拟议的研究将是伤口愈合的范式转变,并将
还提供了对巨噬细胞的机械生物学的重要见解,这对于诊断和治疗很有价值
治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramkumar Tiruvannamalai Annamalai其他文献
Ramkumar Tiruvannamalai Annamalai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramkumar Tiruvannamalai Annamalai', 18)}}的其他基金
相似国自然基金
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
清补通络方丹酚酸B通过激活TLR-4通路促进急性期布鲁氏菌感染宿主体内巨噬细胞M1极化的机制研究
- 批准号:82360867
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
自光声黑色素纳米药物通过抑制铁死亡和调节“肠-肾轴”实现急性肾损伤的可视化治疗
- 批准号:82302279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
E3泛素连接酶Fbxo7通过调节心肌细胞线粒体-内质网稳态减轻急性心肌缺血损伤及其机制研究
- 批准号:82370334
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
土家药山姜通过调控中性粒细胞胞外捕获网的急性肺损伤保护作用及机制研究
- 批准号:82360846
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Role of nonmuscle myosin IIA in sex-dependent failed repair mechanisms in acute kidney injury
非肌肉肌球蛋白 IIA 在急性肾损伤性别依赖性失败修复机制中的作用
- 批准号:
10418648 - 财政年份:2021
- 资助金额:
$ 19.22万 - 项目类别:
Role of nonmuscle myosin IIA in sex-dependent failed repair mechanisms in acute kidney injury
非肌肉肌球蛋白 IIA 在急性肾损伤性别依赖性失败修复机制中的作用
- 批准号:
10311908 - 财政年份:2021
- 资助金额:
$ 19.22万 - 项目类别: