Magnetic nanocomplexes-induced immunomodulation for fracture healing
磁性纳米复合物诱导的免疫调节促进骨折愈合
基本信息
- 批准号:10372632
- 负责人:
- 金额:$ 19.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-10 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsAcuteAdoptedAreaBiochemicalBiocompatible MaterialsBiomechanicsBone RegenerationBone ResorptionCellsChromatinChronicCuesCytoskeletonDefectEndotheliumEngineeringExhibitsExogenous FactorsExposure toF-ActinFosteringFractureFunctional disorderG ActinGene ExpressionGenesHDAC3 geneImmune responseInfiltrationInflammationInflammatory ResponseInjuryKineticsLeadLinkMacrophage ActivationMagnetismMetabolicMethodologyMethodsModelingMorphologyMultipotent Stem CellsMusNatural regenerationNuclearNuclear TranslocationOrgan failureOsteogenesisPathogenesisPathologyPeptidesPharmaceutical PreparationsPhenotypeProcessQuality of lifeRegenerative MedicineResearchRoleSignal TransductionSiteSpecificitySurfaceTLR4 geneTNF geneTestingTherapeuticTherapeutic InterventionTight JunctionsTimeTractionTranscriptional RegulationTraumaTraumatic injuryUp-RegulationWorkage relatedbasebonebone fracture repairbone healingcancer imagingclinically translatablecyclooxygenase 2densitydesigndiagnostic valuedisabilityimmunomodulatory therapiesimmunoregulationinflammatory modulationinsightiron oxidemacrophagemagnetic fieldnanocomplexesnanomaterialspolymerizationpreventregenerative therapysuccesssystemic toxicitytissue regenerationtranscription factoruptakewound healing
项目摘要
Non-healing fractures are a cause of severe disability and have devastating effects on the quality of life.
Currently, there are no reliable first-line therapies that stimulate healthy bone formation and prevent nonunion.
There is a growing body of evidence supporting the indispensable role of macrophages in fracture healing.
Also, macrophage dysfunction is a critical component in the pathogenesis of non-healing or poorly healing
fractures. Immunomodulatory strategies that apply biochemical factors are gaining traction to regulate
macrophage phenotypes. However, they have limited success due to complications with specificity, efficacy,
and systemic toxicity.
Here we propose to develop a magnetic iron-oxide nanocomplexes (MNC)-based therapy for promoting
fracture healing. The cytoskeletal dynamics of macrophages are intricately linked to their inflammatory
response. Our studies confirmed that the cytoskeletal dynamics of macrophages are determined by their
phenotype. Studies also show that mere manipulation of cytoskeletal dynamics using physical cues, without
any exogenous factors, is shown to transform macrophage phenotype. This phenotype modulation is due to
the nuclear translocation of the transcription factor MRTF-A, and changes in chromatin compaction caused by
cytoplasmic-to-nuclear redistribution of histone deacetylase-3 (HDAC3). We hypothesize that intracellular
magnetic force can elicit transcriptional control of macrophage phenotype and promote fracture healing via
MRTF-A release and HDAC3 redistribution.
In SA1, we will engineer magnetic nanocomplexes for targeted internalization and mechanistically
elucidate intracellular force-induced modulation of the cytoskeleton and corresponding change in macrophage
phenotype. In SA2, we will validate macrophage targeting of MNC and elucidate their therapeutic potential in a
murine critical-sized femoral defect. The proposed research will be a paradigm shift in wound healing and will
also provide crucial insights into the mechanobiology of macrophages that are valuable for diagnostic and
therapeutic interventions.
非治疗裂缝是严重残疾的原因,对生活质量产生了毁灭性的影响。
当前,尚无可靠的一线疗法来刺激健康的骨形成并防止骨不连。
越来越多的证据支持巨噬细胞在断裂愈合中必不可少的作用。
同样,巨噬细胞功能障碍是非愈合或愈合不佳的发病机理中的关键成分
断裂。应用生化因素的免疫调节策略正在获得关注以调节
巨噬细胞表型。但是,由于特异性,功效的并发症,他们的成功有限,
和全身毒性。
在这里,我们建议开发磁氧化铁纳米复合物(MNC)的促进治疗
断裂愈合。巨噬细胞的细胞骨架动力学与它们的炎症无关
回复。我们的研究证实,巨噬细胞的细胞骨架动力学取决于其
表型。研究还表明,仅使用物理提示对细胞骨架动力学进行操纵,而没有
任何外源性因素都显示出可以改变巨噬细胞表型。此表型调制是由于
转录因子MRTF-A的核易位,以及由
组蛋白脱乙酰基酶-3(HDAC3)的细胞质至核重新分布。我们假设细胞内
磁力可以引起巨噬细胞表型的转录控制,并通过
MRTF-A释放和HDAC3重新分布。
在SA1中,我们将设计磁性纳米复合物,以进行靶向内在化和机理
阐明细胞内力诱导的细胞骨架调节和巨噬细胞的相应变化
表型。在SA2中,我们将验证MNC的巨噬细胞靶向,并在A中阐明其治疗潜力
鼠关键大小的股骨缺陷。拟议的研究将是伤口愈合的范式转变,将
还提供对巨噬细胞机械生物学的关键见解,这些巨噬细胞对诊断和
治疗干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramkumar Tiruvannamalai Annamalai其他文献
Ramkumar Tiruvannamalai Annamalai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramkumar Tiruvannamalai Annamalai', 18)}}的其他基金
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Role of nonmuscle myosin IIA in sex-dependent failed repair mechanisms in acute kidney injury
非肌肉肌球蛋白 IIA 在急性肾损伤性别依赖性失败修复机制中的作用
- 批准号:
10418648 - 财政年份:2021
- 资助金额:
$ 19.22万 - 项目类别:
Role of nonmuscle myosin IIA in sex-dependent failed repair mechanisms in acute kidney injury
非肌肉肌球蛋白 IIA 在急性肾损伤性别依赖性失败修复机制中的作用
- 批准号:
10311908 - 财政年份:2021
- 资助金额:
$ 19.22万 - 项目类别: