The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
基本信息
- 批准号:10372840
- 负责人:
- 金额:$ 23.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAction PotentialsAddressAdultAttention deficit hyperactivity disorderAxonBrainBrain DiseasesBrain PathologyCRISPR/Cas technologyCalcium ChannelCellsCholinergic ReceptorsDataDefectDevelopmentDiseaseElectroporationEpilepsyEquilibriumEventExhibitsFilopodiaGene DosageGene TransferGenerationsGenesGerm LinesGoalsIndividualInterneuronsKnockout MiceLinkMediatingMental DepressionModelingMolecularMorphogenesisMorphologyMusMutationNeuronsNeurotransmittersNicotinePhenotypeProductionRoleSchizophreniaSeriesShapesSignal PathwaySignal TransductionSignaling MoleculeSystemT-Type Calcium ChannelsTestingTransplantationVaricosityVertebral columnViral Genesbasal forebrainbasecholinergiccholinergic neuroncognitive functionexperimental studygain of functiongain of function mutationgenome editinghippocampal pyramidal neuronin vivoloss of functionloss of function mutationmalformationmouse geneticsmutantnovelpostnatalpreventrelating to nervous systemstereotypytransmission process
项目摘要
Project Summary/Abstract
The cholinergic system, using acetylcholine (ACh) as a neurotransmitter, shapes plasticity and cognitive
functions in the adult cortex by tuning cortical activity, and has been implicated in brain disorders such as epilepsy,
attention-deficit hyperactivity disorder, depression, and schizophrenia. However, the role of ACh signaling in
development of cortical circuits in normal and diseased conditions remains poorly understood. In particular, little
is known about whether and how ACh signaling regulates the wiring of inhibitory interneurons (INs), cellular
components critical for cortical computations. Cortical INs generally develop highly branched axons to establish
local, dense circuit modules. Despite representing a crucial event during the wiring of IN circuits, the cellular and
molecular mechanisms underlying IN axonal arborization remain elusive.
The objective of our proposal is to establish the role of ACh signaling in shaping IN axonal arbors
in vivo. We will also provide evidence that disease-relevant mutations in genes that are essential for ACh
signaling could impact IN axonal branching, and that the axonal phenotype could be ameliorated by
manipulating downstream components in ACh signaling. To achieve this goal, we will perform a series of
experiments using the chandelier cell (ChC), which exclusively innervates axon initial segments of pyramidal
neurons (PNs) and thus powerfully controls spike generation in PNs.
Because of its stereotypy of the axonal organization, the ChC serves as an ideal model to study IN axonal
morphogenesis. Our preliminary data has shown that (1) Axonal filopodia arising from varicosities serve as
precursors of branches in vivo, (2) Filopodia initiation as well as the basal Ca2+ levels in ChC axonal varicosities
are regulated by signaling from nicotinic AChRs (nAChRs) to T-type voltage dependent calcium channels (T-
VDCCs), independently of action potentials/network activity, (3) CRISPR/Cas9-mediated T-VDCC loss-of-
function (LOF) in single ChCs significantly reduces their axonal branching points, and (4) Systemic nicotine
administration to developing postnatal mice increases ChC axonal arbors. Based on these results, we propose
to test the hypothesis that the nAChR-T-VDCC signaling pathway shapes ChC axonal arborization, and disease-
relevant mutations in ACh signaling molecules cause wiring defects in ChCs. In Aim 1, we will elucidate the role
of the nAChR-T-VDCC signaling pathway in ChC axonal arborization in vivo. In Aim 2, we will determine the
effect of the epilepsy-related gain-of-function (GOF) mutation in nAChRs on ChC axonal arborization, and
elucidate whether manipulating T-VDCCs can be a way to revert the nAChR GOF phenotype.
Our study will provide first evidence for the developmental role of ACh signaling in the wiring of INs in the
normal and diseased cortices as well as a novel hint for developing strategies to prevent and ameliorate brain
disorders associated with ACh signaling.
项目摘要/摘要
胆碱能系统,使用乙酰胆碱(ACH)作为神经递质,塑造可塑性
通过调整皮质活性在成年皮层中的功能,并与脑疾病(如癫痫)有关
注意力缺陷多动障碍,抑郁和精神分裂症。但是,ACH信号在
在正常和患病状况下的皮质回路发展仍然很少了解。特别是,很少
知道ACH信号是否以及如何调节抑制性中间神经元(INS),细胞的接线
对皮质计算至关重要的组件。皮质INS通常会形成高分支的轴突以建立
局部密集的电路模块。尽管在电路接线期间代表了至关重要的事件,但蜂窝和
轴突树木化的分子机制仍然难以捉摸。
我们提议的目的是确定ACH信号在轴突乔木中塑造中的作用
体内。我们还将提供证据表明,基因中与疾病有关的突变对ACH至关重要
信号传导可能会影响轴突分支,并且轴突表型可以通过
在ACH信号传导中操纵下游组件。为了实现这一目标,我们将执行一系列
使用枝形纤维电池(CHC)的实验,该实验仅支配了金字塔的轴突初始段
神经元(PN),因此可以强大地控制PN中的尖峰产生。
由于其对轴突组织的定型观念,CHC是研究轴突的理想模型
形态发生。我们的初步数据表明,(1)由静脉曲张引起的轴突丝虫病作为
体内分支的前体,(2)丝状启动以及CHC轴突静脉曲张的基底Ca2+水平
受信号从烟碱ACHR(NACHR)到T型电压依赖性钙通道的信号传导(T-)
VDCC),独立于行动电位/网络活动,(3)CRISPR/CAS9介导的T-VDCC损失 -
单个CHC中的功能(LOF)显着降低了其轴突分支点,(4)全身尼古丁
用于发展产后小鼠的施用会增加CHC轴突轴。基于这些结果,我们建议
为了测试NACHR-T-VDCC信号通路塑造CHC轴突化和疾病 -
ACH信号分子中的相关突变导致CHC中的接线缺陷。在AIM 1中,我们将阐明角色
CHC轴突一子体内的NACHR-T-VDCC信号通路。在AIM 2中,我们将确定
NACHR中与癫痫相关的功能获得(GOF)突变对CHC轴突化的影响,并且
阐明操纵T-VDCC是否可以是恢复NACHR GOF表型的一种方式。
我们的研究将为ACH信号在INS接线中的发育作用提供第一证据
正常和患病的皮质以及开发预防和改善大脑策略的新提示
与ACH信号相关的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKI TANIGUCHI其他文献
HIROKI TANIGUCHI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKI TANIGUCHI', 18)}}的其他基金
The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
- 批准号:
10578784 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
Wiring and developmental principles of inhibitory neocortical circuits
抑制性新皮质回路的布线和发育原理
- 批准号:
10478363 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10523360 - 财政年份:2021
- 资助金额:
$ 23.63万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10558671 - 财政年份:2021
- 资助金额:
$ 23.63万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10096397 - 财政年份:2021
- 资助金额:
$ 23.63万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:12202147
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Peptibodies As Novel Therapies in Atrial Fibrillation
肽体作为心房颤动的新疗法
- 批准号:
10598711 - 财政年份:2023
- 资助金额:
$ 23.63万 - 项目类别:
The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
- 批准号:
10578784 - 财政年份:2022
- 资助金额:
$ 23.63万 - 项目类别:
Autonomic remodeling and modulation as mechanism and therapy for sudden cardiac death in heart failure
自主神经重塑和调节作为心力衰竭心源性猝死的机制和治疗
- 批准号:
9911551 - 财政年份:2020
- 资助金额:
$ 23.63万 - 项目类别:
Interrogating the cholinergic basis of opioid use disorder
探究阿片类药物使用障碍的胆碱能基础
- 批准号:
10839681 - 财政年份:2020
- 资助金额:
$ 23.63万 - 项目类别: