Computational mapping of human B cell migration and differentiation pathways
人类 B 细胞迁移和分化途径的计算图谱
基本信息
- 批准号:10371370
- 负责人:
- 金额:$ 12.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-19 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAdultAffinityAgeAntibody AffinityAntibody-Producing CellsAntigensAsthmaAutoantibodiesAutoantigensAutoimmuneAutoimmune DiseasesAutoimmune Diseases of the Nervous SystemAutoimmunityB cell differentiationB-Cell Antigen ReceptorB-Cell DevelopmentB-LymphocytesB-cell receptor repertoire sequencingBindingBiological ModelsBiologyBloodBlood specimenBone MarrowCOVID-19 pandemicCell Differentiation processCell LineageCellsCellular biologyComplexComputer softwareComputing MethodologiesDNA SequenceDataDevelopmentDiseaseEpidemicEventEvolutionFoundationsFutureGeneticGeographyGoalsHIVHumanImmune responseImmunityImmunoglobulin Somatic HypermutationImmunologistImmunologyIndividualInfectionInfluenza vaccinationKnowledgeLupusMeasuresMediatingMedicalMemoryMethodsModelingModeling of Cellular PathwaysMultiple SclerosisMusMutationMyasthenia GravisNeuromyelitis OpticaOutcomePathogenicityPathologyPathway interactionsPatientsPatternPhasePhylogenetic AnalysisPlasma CellsPlasmablastPlayPopulationProcessRNA SequencesRecording of previous eventsResearchResearch PersonnelRoleScientistSequence AnalysisSourceStructure of germinal center of lymph nodeSystemSystemic Lupus ErythematosusTechnologyTestingTimeTissue DifferentiationTissue SampleTissuesTrainingTranslatingTreesVaccinationVaccinesVariantViralVirusWorkadaptive immune responsebasebiological systemscell motilitycell typecomputer frameworkdata exchangeeffectiveness evaluationexperimental analysisflexibilityhuman modelinfluenza virus vaccinelymph nodesmedical schoolsmethod developmentmigrationmodel designmouse modelneurological pathologynovelpathogenplasma cell differentiationresponseself-renewalsimulationsingle cell analysissingle-cell RNA sequencingsoftware developmenttargeted treatmenttoolvaccination strategyvaccine response
项目摘要
Human B cells play a fundamental role in the adaptive immune response to infection, development of protective
immunity from vaccination, and pathology of many autoimmune diseases. Central to all of these processes are
migration of B cells among different tissues and differentiation of B cells into functional subtypes. Currently,
understanding B cell migration and differentiation is limited because these processes are dynamic and difficult
to directly observe, particularly in humans. Our previous work has demonstrated that it is possible to detect
migration and differentiation events along evolutionary trees inferred from B cell receptor (BCR) sequences,
which are subject to rapid somatic hypermutation and antigen-driven selection during adaptive immune
responses. This is analogous to viral phylogeography, the use of evolutionary trees to track the spread of viruses
during epidemics. However, there are key differences in the biology of B cells and viruses that require modifying
and extending existing approaches to make them appropriate for B cells.
The goal of this proposal is to enable B cell phylogeography. We will develop novel computational
methods that leverage recent advances in single B cell sequencing technology to infer how B cells migrate
between tissues and differentiate into cellular subtypes based on their activation states during immune
responses. The aims of this proposal focus on solving the roadblocks to the development of phylogeographic
methods for B cells. These methods will be validated by simulations and experimental analysis. We will work
with established experimental collaborators to translate these novel methods into meaningful outcomes in the
research of influenza vaccine response and the treatment of autoimmune diseases, including lupus and
myasthenia gravis. We will implement these methods in widely available free software, which will greatly increase
their potential to inform vaccination strategies against other pathogens like HIV and SARS-CoV-2, as well as
treatment of other B cell-mediated conditions such as multiple sclerosis and asthma.
The K99 phase of this proposal will be guided by Prof. Steven Kleinstein at Yale School of Medicine, a
world leader in computational methods development for BCR sequence analysis, and Prof. Kevin O’Connor, a
leading experimental biologist in the B cell pathology of neurologic autoimmune diseases. The candidate, Dr.
Kenneth Hoehn, has a strong background in genetics and evolutionary biology, and has an established record
of developing evolutionary models to study B cell populations from BCR sequence data. The work detailed in
this proposal will fill gaps in the candidate’s training in B cell biology, single cell analysis, and software
development. The R00 phase will build off of this work to develop a highly generalizable framework for
characterizing the complex migration and differentiation patterns that underlie B cells’ role in vaccination and
autoimmunity. This will support new, medically-relevant discoveries about B cell biology, and serve as a
foundation for the candidate’s future as an independent computational immunologist.
人类 B 细胞在对感染的适应性免疫反应、保护性免疫反应的发展中发挥着重要作用。
疫苗接种产生的免疫力以及许多自身免疫性疾病的病理学是所有这些过程的核心。
B细胞在不同组织之间的迁移以及B细胞向功能亚型的分化。
对 B 细胞迁移和分化的理解有限,因为这些过程是动态的且困难的
直接观察,特别是在人类中,我们之前的工作已经证明可以检测到。
从 B 细胞受体 (BCR) 序列推断出沿树进化的迁移和分化事件,
在适应性免疫过程中受到快速体细胞超突变和抗原驱动的选择
这类似于病毒系统发育地理学,利用进化树来追踪病毒的传播。
然而,在流行病期间,B 细胞和病毒的生物学存在关键差异,需要进行修改。
以及现有的扩展方法,使它们适合 B 细胞。
该提案的目标是实现 B 细胞系统发育地理学。我们将开发新的计算方法。
利用单 B 细胞测序技术的最新进展来推断 B 细胞如何迁移的方法
组织之间的相互作用,并根据免疫过程中的激活状态分化为细胞亚型
该提案的目的是解决系统发育地理学发展的障碍。
我们将通过模拟和实验分析来验证这些方法。
与已建立的实验合作者合作,将这些新颖的方法转化为有意义的结果
流感疫苗反应和自身免疫性疾病治疗的研究,包括狼疮和
我们将在广泛使用的免费软件中实施这些方法,这将大大增加重症肌无力的风险。
它们有可能为针对 HIV 和 SARS-CoV-2 等其他病原体的疫苗接种策略提供信息,以及
治疗其他 B 细胞介导的疾病,例如多发性硬化症和哮喘。
该提案的 K99 阶段将由耶鲁大学医学院的 Steven Kleinstein 教授指导。
BCR 序列分析计算方法开发领域的世界领导者,Kevin O’Connor 教授
神经系统自身免疫性疾病 B 细胞病理学领域的领先实验生物学家。
Kenneth Hoehn,在遗传学和进化生物学方面拥有深厚的背景,并拥有良好的记录
开发进化模型来研究 BCR 序列数据中的 B 细胞群。
该提案将填补候选人在 B 细胞生物学、单细胞分析和软件培训方面的空白
R00 阶段将在这项工作的基础上开发一个高度通用的框架。
表征 B 细胞在疫苗接种和免疫接种中的作用的复杂迁移和分化模式
这将支持有关 B 细胞生物学的新的、医学相关的发现,并作为
为候选人未来作为独立计算免疫学家奠定基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Hoehn其他文献
Kenneth Hoehn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Hoehn', 18)}}的其他基金
Computational mapping of human B cell migration and differentiation pathways
人类 B 细胞迁移和分化途径的计算图谱
- 批准号:
10889629 - 财政年份:2022
- 资助金额:
$ 12.38万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
GMP manufacturing and IND Filing of IN-002, a potent inhaled muco-trapping antibody therapy for Respiratory Syncytial Virus
IN-002 的 GMP 生产和 IND 备案,这是一种针对呼吸道合胞病毒的有效吸入粘液捕获抗体疗法
- 批准号:
10761398 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别:
Development of MS2045 for inhibition of Zika methyltransferase
开发用于抑制寨卡病毒甲基转移酶的 MS2045
- 批准号:
10645958 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别:
Shifting immunodominance of humoral immunity against influenza viruses
改变体液免疫对流感病毒的免疫优势
- 批准号:
10720359 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别:
Structure-based Antiviral Design against HTLV-1 Protease
基于结构的 HTLV-1 蛋白酶抗病毒设计
- 批准号:
10750889 - 财政年份:2023
- 资助金额:
$ 12.38万 - 项目类别:
Identifying biomarker signatures of prognostic value for Multisystem Inflammatory Syndrome in Children (MIS-C)
识别儿童多系统炎症综合征 (MIS-C) 预后价值的生物标志物特征
- 批准号:
10651536 - 财政年份:2022
- 资助金额:
$ 12.38万 - 项目类别: