Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
基本信息
- 批准号:8636391
- 负责人:
- 金额:$ 38.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-15 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsAntimycobacterial AgentsAntitubercular AgentsBacteriaBacterial Antibiotic ResistanceBacterial InfectionsCell WallChemicalsClinicalComplementCyclic GMP-Dependent Protein KinasesDevelopmentDrug Resistant TuberculosisDrug resistanceDrug resistance in tuberculosisDrug-sensitiveEffectivenessEnzymesEpidemicEthambutolExtreme drug resistant tuberculosisFolateFolate Biosynthesis PathwayFolic Acid AntagonistsGenesGeneticGenus MycobacteriumHomologous GeneHumanIn VitroInterruptionKnowledgeLaboratoriesLibrariesMetabolismMissionMolecularMulti-Drug ResistanceMycobacterium smegmatisMycobacterium tuberculosisNatural ResistancePathway interactionsPermeabilityPharmaceutical PreparationsPharmacologic SubstancePredispositionProteinsPterinsRegimenRegulationResearchResistanceRifampinRoleTestingTuberculosisUnited States National Institutes of HealthcGMP-dependent protein kinase Ibetacombatcombinatorialdesigndrug developmentdrug efficacyefficacy testingenzyme activityfolic acid metabolismgenome-wideimprovedinhibitor/antagonistinsightinterestisoniazidmacrophagemutantnovelnovel strategiesnovel therapeutic interventionp-Aminosalicylic Acidpre-clinicalpublic health relevancepyrophosphataseresistance mechanismscreeningtripolyphosphatetuberculosis drugs
项目摘要
DESCRIPTION (provided by applicant): The worldwide emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) strains of Mycobacterium tuberculosis (Mtb) is severely complicating the current tuberculosis (TB) epidemic. New TB drugs are urgently needed to combat MDR/XDR TB and to improve the current 6-month drug regimens for non-resistant TB. The folate biosynthetic pathway has been an attractive target for antibiotic development since it is absent in humans. A preliminary study in our laboratory using a transposon insertion library in M. smegmatis has identified several novel determinants of antifolate resistance in mycobacteria. One antifolate sensitive mutant encodes a homolog of the eukaryotic-type protein kinase G (PknG), recently identified as possible regulator of persistence of pathogenic mycobacteria in macrophages. Preliminary studies reveal that PknG regulates de novo folate biosynthesis by modulating the activity of a dihydroneopterin triphosphate pyrophosphatase that controls the influx of pterin moiety into the folate pathway. This novel regulatory mechanism has not been previously identified for de novo folate biosynthesis. Both genetic interruption and specific chemical inhibition of PknG kinase activity result in hyper-susceptibility of mycobacteria not only to antifolate drugs but also other antibiotics, including frontline TB drugs such as rifampicin and ethambutol. This is due to a direct effect on de novo folate biosynthesis and an indirect effect by altering cell wall permeability, respectively. The central hypothesis of this application is that genes defining intrinsic antifolate resistance encode proteins that can be targeted by potentiators that sensitize Mtb to antifolate drugs by inhibiting the resistance mechanisms. Specifically, pharmaceutical inactivation of PknG could sensitize Mtb to antifolates and multiple other approved drugs, to which it is currently resistant. Three specific aims are designed to test this hypothesis. First, using a non-biased approach, we will identify and characterize the entire genome-wide antifolate resistant determinants (the antifolate resistome) of Mtb. Secondly, we will rigorously investigate the molecular mechanisms of PknG-regulated folate-biosynthesis in Mtb. Lastly, we will characterize the potentiating effects of PknG inhibitors on antifolate drugs and the efficacy of their combined effect against drug-resistant and non-resistant Mtb. These proposed studies will not only provide insight into a previously unknown regulatory mechanism of de novo folate biosynthesis in bacteria but also into the mechanisms of intrinsic resistance of Mtb to antifolate drugs. In terms of drug development, these studies will reveal novel targets and provide proof of concept that inhibition of intrinsic resistance pathways in Mtb can be used to improve the effectiveness of already available antibiotics. )
描述(由申请人提供):全球范围内出现的耐多药(MDR)和广泛耐药(XDR)结核分枝杆菌(Mtb)菌株使当前的结核病(TB)流行严重复杂化。迫切需要新的结核病药物来对抗耐多药/广泛耐药结核病并改进目前的非耐药结核病 6 个月药物治疗方案。叶酸生物合成途径一直是抗生素开发的一个有吸引力的目标,因为它在人类中不存在。我们实验室使用耻垢分枝杆菌中的转座子插入文库进行的初步研究已经确定了分枝杆菌中抗叶酸剂耐药性的几个新决定因素。一种抗叶酸敏感突变体编码真核型蛋白激酶 G (PknG) 的同源物,最近被鉴定为巨噬细胞中致病性分枝杆菌持续存在的可能调节因子。初步研究表明,PknG 通过调节二氢新蝶呤三磷酸焦磷酸酶的活性来调节叶酸从头生物合成,该焦磷酸酶控制蝶呤部分流入叶酸途径。此前尚未发现这种新的叶酸生物合成新调节机制。 PknG 激酶活性的基因中断和特异性化学抑制都会导致分枝杆菌不仅对抗叶酸药物高度敏感,而且对其他抗生素也高度敏感,包括利福平和乙胺丁醇等一线结核病药物。这是由于分别对叶酸从头生物合成的直接影响和通过改变细胞壁渗透性的间接影响。本申请的中心假设是,定义内在抗叶酸药物耐药性的基因编码的蛋白质可以被增效剂靶向,通过抑制耐药机制,使结核分枝杆菌对抗叶酸药物敏感。具体来说,PknG 的药物灭活可能会使 Mtb 对抗叶酸剂和多种其他已批准的药物敏感,而 Mtb 目前对这些药物具有耐药性。设计了三个具体目标来检验这一假设。首先,我们将使用无偏见的方法来识别和表征 Mtb 的整个基因组抗叶酸抗性决定簇(抗叶酸抗性组)。其次,我们将严格研究 Mtb 中 PknG 调节叶酸生物合成的分子机制。最后,我们将描述 PknG 抑制剂对抗叶酸药物的增强作用以及它们对耐药和非耐药 Mtb 的联合作用的功效。这些拟议的研究不仅将深入了解细菌中从头叶酸生物合成的先前未知的调节机制,而且还将深入了解结核分枝杆菌抗叶酸药物的内在耐药机制。在药物开发方面,这些研究将揭示新的靶标,并提供概念证明,即抑制结核分枝杆菌的内在耐药途径可用于提高现有抗生素的有效性。 )
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Protein kinase G is required for intrinsic antibiotic resistance in mycobacteria.
分枝杆菌内在抗生素耐药性需要蛋白激酶 G。
- DOI:
- 发表时间:2009-08
- 期刊:
- 影响因子:4.9
- 作者:Wolff, Kerstin A;Nguyen, Hoa T;Cartabuke, Richard H;Singh, Ajay;Ogwang, Sam;Nguyen, Liem
- 通讯作者:Nguyen, Liem
Targeting antibiotic resistance mechanisms in Mycobacterium tuberculosis: recharging the old magic bullets.
针对结核分枝杆菌的抗生素耐药机制:为旧的魔法子弹充电。
- DOI:
- 发表时间:2012-09
- 期刊:
- 影响因子:0
- 作者:Nguyen; Liem
- 通讯作者:Liem
Counterattacking drug-resistant tuberculosis: molecular strategies and future directions.
反击耐药结核病:分子策略和未来方向。
- DOI:
- 发表时间:2012-09
- 期刊:
- 影响因子:0
- 作者:Nguyen, Liem;Jacobs, Michael R
- 通讯作者:Jacobs, Michael R
Methylfolate Trap Promotes Bacterial Thymineless Death by Sulfa Drugs.
甲基叶酸陷阱促进磺胺药物引起的细菌无胸腺死亡。
- DOI:
- 发表时间:2016-10
- 期刊:
- 影响因子:6.7
- 作者:Guzzo, Marissa B;Nguyen, Hoa T;Pham, Thanh H;Wyszczelska;Jakubowski, Hieronim;Wolff, Kerstin A;Ogwang, Sam;Timpona, Joseph L;Gogula, Soumya;Jacobs, Michael R;Ruetz, Markus;Kräutler, Bernhard;Jacobsen, Donald W;Zhang, Guo
- 通讯作者:Zhang, Guo
Bacterial conversion of folinic acid is required for antifolate resistance.
抗叶酸抗药性需要细菌转化亚叶酸。
- DOI:
- 发表时间:2011-04-29
- 期刊:
- 影响因子:0
- 作者:Ogwang, Sam;Nguyen, Hoa T;Sherman, Marissa;Bajaksouzian, Saralee;Jacobs, Michael R;Boom, W Henry;Zhang, Guo;Nguyen, Liem
- 通讯作者:Nguyen, Liem
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liem Duy Nguyen其他文献
Liem Duy Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liem Duy Nguyen', 18)}}的其他基金
GAIT complex formation and Mycobacterium tuberculosis
步态复合体的形成和结核分枝杆菌
- 批准号:
10195661 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
GAIT complex formation and Mycobacterium tuberculosis
步态复合体的形成和结核分枝杆菌
- 批准号:
10381691 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
A Novel Folate Antagonistic Strategy to Treat Drug Resistant Pseudomonas aeruginosa and Enterobacteriaceae
治疗耐药铜绿假单胞菌和肠杆菌的新型叶酸拮抗策略
- 批准号:
8956026 - 财政年份:2015
- 资助金额:
$ 38.86万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
8445317 - 财政年份:2010
- 资助金额:
$ 38.86万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
7862191 - 财政年份:2010
- 资助金额:
$ 38.86万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
8063151 - 财政年份:2010
- 资助金额:
$ 38.86万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
8240410 - 财政年份:2010
- 资助金额:
$ 38.86万 - 项目类别:
相似国自然基金
放线菌吲哚-噁唑类抗生素的生物合成机制及其组合生物合成研究
- 批准号:32360009
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于真菌的跨界群体感应干扰对水环境抗生素抗性基因传播的影响及调控研究
- 批准号:42307159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
附着培养微藻对市政污水中抗生素与常量污染物长效协同净化的调控机制
- 批准号:52370043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
g-C3N4基原子级超薄S-型异质结构建及抗生素降解机制研究
- 批准号:22308203
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于抗生素去除的造纸浆渣基功能化有机高分子絮凝剂的结构调控及构效关系研究
- 批准号:52370015
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
- 批准号:
10698829 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Optimization of Atypical Antimycobacterial Carbapenem Antibiotics
非典型抗分枝杆菌碳青霉烯类抗生素的优化
- 批准号:
10736024 - 财政年份:2023
- 资助金额:
$ 38.86万 - 项目类别:
Role of NadD in Mycobacterium tuberculosis proteostasis
NadD 在结核分枝杆菌蛋白质稳态中的作用
- 批准号:
10194900 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别:
Synthetic Nanoparticle-antibody (SNAb) Based Depletion of Myeloid-Derived Suppressor Cells for TB Host-Directed Therapy
基于合成纳米颗粒抗体 (SNAb) 的骨髓源性抑制细胞耗竭,用于结核宿主定向治疗
- 批准号:
10673996 - 财政年份:2021
- 资助金额:
$ 38.86万 - 项目类别: