Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
基本信息
- 批准号:10200845
- 负责人:
- 金额:$ 32.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcidsAnimalsArchitectureArthrogryposisAtaxiaAtomic Force MicroscopyBinding SitesBiochemicalBlood PressureBlood VesselsCationsCell LineCell VolumesCell membraneCellsCholesterolCuesDataDefectDevelopmentDietary Fatty AcidDietary intakeDiseaseEicosapentaenoic AcidElectrophysiology (science)EmbryoEndothelial CellsErythrocyte volumeErythrocytesFamilyFatty AcidsFunctional disorderGoalsHemolytic AnemiaHereditary DiseaseHumanInheritedIon ChannelKnock-outKnowledgeLightLipidsMechanicsMediatingMembraneMembrane LipidsMembrane ProteinsMissionModalityMolecularMusMutationNerveNeural ConductionNeuronsOutcomePathway interactionsPermeabilityPhenotypePhosphatidylinositolsPhosphatidylserinesPhospholipidsPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsPolyunsaturated Fatty AcidsProprioceptionProteinsPublic HealthRegulationResearchSaturated Fatty AcidsSignal TransductionSite-Directed MutagenesisStimulusStretchingTestingTextTouch sensationTranslatingUnited States National Institutes of HealthVascular Endothelial Cellbasebiophysical techniquescell motilitydietaryeffective therapygain of functionhuman diseaseimprovedinnovationliquid chromatography mass spectrometryloss of function mutationmechanical forcemechanical propertiesmembermutantneuroblastoma cellpain sensationpatch clampresponsestomatocytic anemiatranslational impactvibration
项目摘要
Mechanosensitive ion channels rely on membrane composition to transduce physical stimuli into electrical signals. Piezo channels mediate mechanoelectrical transduction to regulate crucial physiological processes, including vascular architecture and remodeling, cell migration, erythrocyte volume, touch, vibration, and proprioception. Piezo1 and Piezo2 are essential proteins in mice, as global knockouts are embryonic lethal and cell-specific
knockouts result in animals with severe defects. In humans, Piezo channels gain- and loss-of-function mutations
have been associated with hereditary human pathophysiologies. Mutations in Piezo1 are associated with dehydrated hereditary stomatocytosis, a hemolytic anemia characterized by increased cation permeability and dehydrated erythrocytes. Hence, it is essential to determine the proteins and lipids that regulate Piezo channels gating
mechanisms. It has been shown that phosphoinositides and phosphatidylserine translocation regulate Piezo
channels activity. However, it remains largely unknown how dietary fatty acids-containing phospholipids modulate Piezo1 and Piezo2 mechanical gating. Our long-term goal is to determine the mechanisms underpinning
how bioactive lipids modulate mechanosensitive ion channels. In this proposal, the overall objective is to establish the molecular basis underlying Piezo channels modulation by dietary fatty acids. The central hypothesis is
that Piezo channels activation and inactivation are regulated by the mechanical properties of the membrane via
lipid remodeling. The rationale for the proposed research plan is that once the precise mechanisms are determined whereby fatty acids modulate Piezo channels function, it will be possible to use fatty acids to control
vascular function and ameliorate the effects of hereditary disorders. The hypothesis will be tested by pursuing
three Specific Aims: 1) Determine how fatty acid composition modulates Piezo1 activity through changes in
membrane stiffness; 2) Determine the effect of dietary fatty acids on Piezo1 mutations causing red blood cell
disorders; and 3) Test the hypothesis that saturated fatty acids decrease Piezo2 activation. We will leverage
functional, biochemical, and biophysical approaches to uncover the contribution of bioactive lipids to mechanosensation. The research plan is innovative because it exploits the use of dietary fatty acids to control Piezo
channels mechanical response. The proposed research is significant because it is expected to have broad translational impact in targeting Piezo channels, involved in vascular and neuronal function.
机械敏感的离子通道依靠膜组成将物理刺激转移到电信号中。压电通道介导机械转导的机械转导,以调节关键的生理过程,包括血管结构和重塑,细胞迁移,红细胞体积,触摸,振动和前置感受。压电1和压电2是小鼠中必不可少的蛋白
敲除导致患有严重缺陷的动物。在人类中,压电通道获得了功能丧失突变
与遗传性人类病理生理有关。压电1中的突变与脱水的遗传性气孔病,这是一种溶血性贫血,其特征是阳离子渗透性增加和脱水红细胞。因此,必须确定调节压电通道的蛋白质和脂质
机制。已经表明,磷酸肌醇和磷脂酰丝氨酸易位调节压电
通道活动。然而,在很大程度上尚不清楚含饮食脂肪酸的磷脂如何调节压电1和压电2机械门控。我们的长期目标是确定基础的机制
生物活性脂质如何调节机械敏感的离子通道。在此提案中,总体目标是建立通过饮食脂肪酸调节的分子基础压电通道。中心假设是
压电通道激活和灭活受膜的机械性能调节
脂质重塑。拟议的研究计划的理由是,一旦确定了脂肪酸调节压电通道功能的精确机制,就可以使用脂肪酸来控制
血管功能并改善遗传性疾病的作用。该假设将通过追求来检验
三个具体目的:1)确定脂肪酸成分如何通过变化调节压电1的活性
膜刚度; 2)确定饮食脂肪酸对导致红细胞的压电1突变的影响
疾病; 3)检验饱和脂肪酸减少压电2激活的假设。我们将利用
功能性,生化和生物物理方法,以发现生物活性脂质对机械敏的贡献。该研究计划具有创新性,因为它利用使用饮食脂肪酸来控制压电
通道机械响应。拟议的研究很重要,因为预计它将在靶向涉及血管和神经元功能的压电通道中具有广泛的翻译影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeria Vasquez其他文献
Valeria Vasquez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeria Vasquez', 18)}}的其他基金
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10628121 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
9797240 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10984747 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
9978842 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10654797 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10425414 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
Regulation of mechanosensitive ion channels by membrane lipids
膜脂对机械敏感离子通道的调节
- 批准号:
10395049 - 财政年份:2019
- 资助金额:
$ 32.68万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Diversity Supplement for Angiogenic and anti-microbial supports for pulp regeneration
用于牙髓再生的血管生成和抗微生物支持的多样性补充剂
- 批准号:
10889680 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Three-dimensional Confocal Microscopy Visualization and AFM-IR Chemical Mapping of Lung Surfactant Monolayer Collapse Morphologies
肺表面活性剂单层塌陷形态的三维共焦显微镜可视化和 AFM-IR 化学图谱
- 批准号:
10751972 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
The role of NPRL2 loss in focal cortical dysplasia
NPRL2 缺失在局灶性皮质发育不良中的作用
- 批准号:
10634155 - 财政年份:2023
- 资助金额:
$ 32.68万 - 项目类别:
Characterizing the Relationship Between Alcohol Consumption and Neuron-Derived Exosomal MicroRNA Cargo in an Adolescent-Young Adult Twin Cohort
青少年双胞胎队列中酒精消耗与神经元衍生的外泌体 MicroRNA 货物之间关系的表征
- 批准号:
10452928 - 财政年份:2022
- 资助金额:
$ 32.68万 - 项目类别: