TAK1 signaling in skeletal muscle
骨骼肌中的 TAK1 信号传导
基本信息
- 批准号:10201515
- 负责人:
- 金额:$ 42.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgingAtrophicAutophagocytosisAutophagosomeBiochemicalBiogenesisBiological AssayBirthChronic DiseaseCommunicationComplexComplicationDataDenervationDiseaseEquilibriumEtiologyFundingGeneticGrowthGrowth FactorHealthHomeostasisHumanHypertrophyImmobilizationImpairmentInhibition of ApoptosisInjuryKnockout MiceKyphosis deformity of spineLeadLifeLoxP-flanked alleleMAPK Signaling Pathway PathwayMaintenanceMediatingMitochondriaMolecularMolecular BiologyMusMuscleMuscle DevelopmentMuscle functionMuscle satellite cellMuscular AtrophyMuscular DystrophiesMyoblastsNatural regenerationNatureOxidation-ReductionOxidative StressPathway interactionsPharmaceutical PreparationsPhasePhosphorylationPhosphotransferasesPopulationPreventionProductionProtein BiosynthesisProteinsReactive Oxygen SpeciesRegulationReportingRespiratory physiologyRoleSignal PathwaySignal TransductionSignaling ProteinSkeletal MuscleStarvationStimulusStructureSyndromeTNF receptor-associated factor 6TamoxifenTestingTransforming Growth Factorsbasecell typeconditional knockoutexperimental studyimprovedmTOR Signaling Pathwaymitochondrial dysfunctionmouse modelmuscle formmuscle hypertrophymuscle regenerationnew therapeutic targetnovelpreventprotein degradationresponsesatellite cellself-renewalskeletal muscle growthskeletal muscle wastingwasting
项目摘要
Abstract
Loss of skeletal muscle mass is a devastating complication of a wide range of diseases and
conditions. However, there is still no approved therapy to prevent muscle wasting partly because the
mechanisms that regulate skeletal muscle mass remain enigmatic. Accumulating evidence suggests
that an array of signaling pathways regulates skeletal muscle mass mainly through modulating the
rate of protein synthesis and degradation. However, upstream signaling mechanisms that are involved
in the regulation of muscle mass remain poorly understood. During the current funding of this project,
we showed TRAF6 mediates muscle atrophy and inhibits muscle regeneration in a variety of catabolic
conditions. We also demonstrated that TRAF6 and TAK1 are important regulators of satellite cell
homeostasis in adult skeletal muscle. In contrast to TRAF6, of which activation, causes muscle
wasting, we have discovered that TAK1 is essential for skeletal muscle growth and maintenance of
muscle mass in adults. Inducible myofiber-specific inactivation of TAK1 in mice (henceforth TAK1mko)
leads to severe muscle wasting and development of kyphosis. The positive role of TAK1 in muscle
growth is also supported by our findings that the activation of TAK1 is dramatically increased in
skeletal muscle undergoing hypertrophy. Our experiments also suggest that TAK1 is required for the
activation of specific intracellular pathways which promote skeletal muscle growth. Moreover, our
studies indicate that TAK1 may be required for the activation of autophagy/mitophagy, regulation of
mitochondrial structure and function, and maintenance of redox balance in skeletal muscle of adults.
Based on our preliminary data, we hypothesize that (I) TAK1 promotes skeletal muscle growth and
inhibits atrophy through augmenting protein synthesis and preventing oxidative stress; (II) TAK1
induces the activation of specific intracellular signaling pathways to augment skeletal muscle mass;
and (III) TAK1 is required for the activation of autophagy/mitophagy and regulation of mitochondrial
dynamics (i.e. biogenesis, fusion, and fission) and respiratory function in adult skeletal muscle. To test
these hypotheses, in the next phase of the project, we propose to address the following three specific
aims: (1) Establish the role and investigate the molecular mechanisms by which TAK1 promotes
skeletal muscle growth and prevents atrophy; (2) Investigate the signaling mechanisms by which
TAK1 regulates skeletal muscle mass; and (3) Investigate the role of TAK1 in regulation of autophagy
and mitochondrial content and function in adult skeletal muscle.
抽象的
骨骼肌质量的丧失是多种疾病的毁灭性并发症
状况。但是,仍然没有批准的疗法来防止肌肉浪费部分,部分原因是
调节骨骼肌质量的机制仍然神秘。积累的证据表明
一系列信号通路主要通过调节来调节骨骼肌质量
蛋白质合成和降解速率。但是,涉及的上游信号传导机制
在调节肌肉中,质量的理解仍然很少。在当前的该项目资金中,
我们显示Traf6介导肌肉萎缩并抑制各种分解代谢的肌肉再生
状况。我们还证明了TRAF6和TAK1是卫星电池的重要调节剂
成人骨骼肌的稳态。与Traf6相反,激活会导致肌肉
浪费,我们发现TAK1对于骨骼肌生长和维护至关重要
成人的肌肉质量。小鼠TAK1的诱导肌纤维特异性灭活(此后TAK1MKO)
导致严重的肌肉浪费和开发性脑膜病。 TAK1在肌肉中的积极作用
我们的发现也支持增长,即tak1的激活显着增加
骨骼肌接受肥大。我们的实验还表明,tak1是必需的
特定细胞内途径的激活,这些途径促进骨骼肌生长。而且,我们的
研究表明,激活自噬/线粒体可能需要TAK1,调节
线粒体结构和功能,以及成人骨骼肌氧化还原平衡的维持。
根据我们的初步数据,我们假设(i)tak1促进骨骼肌肉的生长和
通过增强蛋白质合成并预防氧化应激,抑制萎缩。 (ii)tak1
诱导特定细胞内信号通路的激活,以增强骨骼肌质量。
(iii)tak1是激活自噬/线粒体和线粒体调节所必需的
成人骨骼肌的动力学(即生物发生,融合和裂变)和呼吸功能。测试
这些假设,在项目的下一个阶段,我们建议解决以下三个特定的特定
目的:(1)确定角色并研究TAK1促进的分子机制
骨骼肌生长并防止萎缩; (2)研究信号传导机制
TAK1调节骨骼肌质量; (3)研究tak1在调节自噬中的作用
成年骨骼肌的线粒体含量和功能。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estrogen-Related Receptor Gamma Gene Therapy Promotes Therapeutic Angiogenesis and Muscle Recovery in Preclinical Model of PAD.
- DOI:10.1161/jaha.122.028880
- 发表时间:2023-08-15
- 期刊:
- 影响因子:5.4
- 作者:Sopariwala, Danesh H. H.;Rios, Andrea S. S.;Saley, Addison;Kumar, Ashok;Narkar, Vihang A. A.
- 通讯作者:Narkar, Vihang A. A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ASHOK KUMAR其他文献
ASHOK KUMAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ASHOK KUMAR', 18)}}的其他基金
TWEAK/Fn14/UPR Signaling in Skeletal Muscle Wasting
骨骼肌萎缩中的 TWEAK/Fn14/UPR 信号转导
- 批准号:
10660397 - 财政年份:2023
- 资助金额:
$ 42.97万 - 项目类别:
Non-Coding Variants of Angiotensinogen Gene and Hypertension
血管紧张素原基因的非编码变异与高血压
- 批准号:
9197334 - 财政年份:2016
- 资助金额:
$ 42.97万 - 项目类别:
Non-Coding Variants of Angiotensinogen Gene and Hypertension
血管紧张素原基因的非编码变异与高血压
- 批准号:
9325162 - 财政年份:2016
- 资助金额:
$ 42.97万 - 项目类别:
MYD88 Signaling in Mammalian Myoblast Fusion
哺乳动物成肌细胞融合中的 MYD88 信号转导
- 批准号:
9144184 - 财政年份:2015
- 资助金额:
$ 42.97万 - 项目类别:
MYD88 Signaling in Mammalian Myoblast Fusion
哺乳动物成肌细胞融合中的 MYD88 信号转导
- 批准号:
9336240 - 财政年份:2015
- 资助金额:
$ 42.97万 - 项目类别:
TAK1/TRAF6 Signaling in Skeletal Muscle
骨骼肌中的 TAK1/TRAF6 信号传导
- 批准号:
8502172 - 财政年份:2011
- 资助金额:
$ 42.97万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 42.97万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 42.97万 - 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究
- 批准号:
10654333 - 财政年份:2023
- 资助金额:
$ 42.97万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 42.97万 - 项目类别: