Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis
哺乳动物表皮的内在和外在纺锤体定向机制
基本信息
- 批准号:10360689
- 负责人:
- 金额:$ 30.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAdherens JunctionAdhesionsAdhesivesAnaphaseApicalArchitectureBasal CellBehaviorBullaCadherinsCarcinomaCell DensityCell Fate ControlCell divisionCell-Cell AdhesionCell-Matrix JunctionCellsCommunitiesComplexCuesDaughterDefectDevelopmentDiseaseEctodermal DysplasiaEmbryoEpidermisEpidermolysis BullosaEpithelialEquilibriumFocal AdhesionsGPSM1 geneGPSM2 geneGene ExpressionGene SilencingGenesGeneticGenetic ModelsGenetic TechniquesGoalsGrowthHomeostasisHomologous GeneHumanHyperplasiaImageIntegrinsIntrinsic factorJunctional Epidermolysis BullosaKnowledgeLabelLeadMalignant NeoplasmsMediatingMetaphaseMitosisModelingMolecularMorphogenesisMutateMutationNatureOnline Mendelian Inheritance In ManOutcomePathogenesisPathologicPathway interactionsPatternPhenotypePhosphorylationPlayPositioning AttributeProcessPropertyProteinsProteomicsRNA InterferenceResourcesRoleScaffolding ProteinShapesSignal PathwaySkinSkin AbnormalitiesStratificationStratified EpitheliumStratum BasaleStructureSyndromeTechniquesTimeTissuesVariantVinculinWorkafadinalpha catenincell cortexcleft lip and palatecohortex vivo imagingexhaustionexperimental studyflexibilityhuman diseasein vivoinnovationinsightknock-downloss of functionmechanotransductionmouse modelnectinparalogous geneprogenitorprotein protein interactionreal-time imagesresponseself-renewalskin disorderskin organogenesisstemstem cell divisionstem cellstelophasetherapy developmenttissue stresstooltreatment strategyultrasound
项目摘要
ABSTRACT
Proper control of stem cell division is critical for tissue morphogenesis and homeostasis. When dysregulated, it
can lead to hypoplasia and stem cell exhaustion on the one hand, or tissue overgrowth and cancer on the other.
But mitosis is more than simple proliferation, as cell division can be controlled not only in time but also in space.
Oriented cell divisions (OCDs) are an example of the latter, and for stem and progenitor cells, choices between
division axes can dictate cell fate outcomes and impact tissue architecture. In stratified epithelia such as the
epidermis, basal progenitors divide either within the plane of the epithelium, or perpendicular to it. Evidence
suggests that planar divisions are generally self-renewing symmetric cell divisions (SCDs) while perpendicular
divisions are differentiative asymmetric cell divisions (ACDs). Previous work from our lab has shown that ACDs
are directed by a complex of polarity and spindle orientation proteins—converging on the critical scaffolding
protein LGN (Gpsm2)—which localize asymmetrically at the apical cell cortex. More recently, we have found that
the paralog AGS3 (Gpsm1) seems to oppose LGN, and functions in promoting SCDs through an unknown
mechanism. In addition, we recently made the surprising discovery that division orientation is not fixed during
metaphase, as previously thought, but can be further refined during late stages of mitosis. In this process, which
we term “telophase correction,” roughly one-third of basal cells enter anaphase at oblique angles, but then
reorient to either planar or perpendicular. We have learned that cell-cell adhesions—specifically, the
mechanosensing components of the adherens junction—are important for telophase correction to occur, and
can operate independently of LGN. This demonstrates that in addition to intrinsic cues such as the LGN complex,
extrinsic factors such as the local tissue microenvironment influence the final division axis. Despite what we and
others have learned about the molecular control of ACDs, major knowledge gaps exist in understanding how
oriented divisions shape tissue architecture both during normal development and in congenital skin diseases
such as epidermolysis bullosa and ectodermal dysplasia. Specifically, the objectives of this proposal are to
develop a better understanding of 1) what regulates SCDs and how the choice between SCD/ACD is made
(SA1), 2) how cell-cell adhesion, cell-matrix, and local cell density impact division orientation and fate decisions
(SA2). To achieve these goals, we will leverage a combination of innovative approaches, centered on our rapid,
high-throughput technique—lentiviral ultrasound-guided gene inactivation and gene expression (LUGGIGE)—
which we will utilize to generate mouse models of both gene loss and of specific mutations found in human
diseases. Combined with ex vivo imaging of skin explants and in vivo proteomic approaches to characterize the
LGN and AGS3 interactomes using TurboID, these comprehensive studies will provide insights into the cell-
intrinsic and extrinsic cues that determine division orientation, and how they operate during normal epidermal
growth and in blistering and dysplastic skin diseases.
抽象的
正确控制干细胞分裂对于组织形态发生和稳态至关重要。当失调时,它
一方面会导致发育不全和干细胞衰竭,另一方面会导致组织过度生长和癌症。
但是有丝分裂不仅仅是简单的增殖,因为不仅可以及时而且在太空中控制细胞分裂。
定向细胞分裂(OCD)是后者的一个例子,对于茎和祖细胞,选择
分裂轴可以决定细胞脂肪的结果并影响组织结构。在分层的上皮中,例如
证据,基本祖细胞在上皮平面内分裂,或垂直于其。
表明平面分裂通常是自我更新的对称细胞划分(SCD),而垂直于
分裂是区分不对称的细胞分裂(ACD)。我们实验室的先前工作表明ACD
由极性和主轴取向蛋白的复合物引导 - 临界脚手架
蛋白LGN(GPSM2) - 在根尖细胞皮质中不对称地定位。最近,我们发现
Paratorog AGS3(GPSM1)似乎反对LGN,并通过未知来促进SCD
机制。此外,我们最近提出了令人惊讶的发现,即在
如前所述,中期可以在有丝分裂的后期进一步完善。在此过程中,
我们称“末期校正”,大约有三分之一的基本细胞以倾斜角度进入后期,但是
重新定位平面或垂直。我们了解到细胞细胞的综述,特别是
粘附连接的机械传感成分 - 发生末期校正很重要,并且
可以独立于LGN操作。这表明,除了固有的线索(例如LGN复合物)外
诸如局部组织微环境等外部因素会影响最终分裂轴。尽管我们和
其他人了解了ACD的分子控制,在理解如何
定向分裂在正常发育和先天性皮肤疾病中塑造组织结构
例如表皮分解球囊和外胚层发育不良。具体而言,该提议的目标是
更好地了解1)哪种调节SCD以及如何做出SCD/ACD之间的选择
(SA1),2)细胞 - 细胞粘合剂,细胞 - 矩阵和局部细胞密度影响分裂方向和脂肪决策如何
(SA2)。为了实现这些目标,我们将利用创新方法的结合,集中在我们的快速,
高通量技术 - 居住超声引导的基因失活和基因表达(Luggige) -
我们将利用它来生成基因损失和人类特异性突变的小鼠模型
疾病。结合皮肤外植体和体内蛋白质组学方法的体内成像,以表征
LGN和AGS3使用涡轮增压体相互作用,这些全面的研究将为细胞提供见解。
确定分裂方向的固有和外在提示,以及它们在正常表皮期间的运作方式
生长,发脾气和发育不良的皮肤疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT E WILLIAMS其他文献
SCOTT E WILLIAMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT E WILLIAMS', 18)}}的其他基金
Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis
哺乳动物表皮的内在和外在纺锤体定向机制
- 批准号:
10585931 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis
哺乳动物表皮的内在和外在纺锤体定向机制
- 批准号:
10210677 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
A6A: GENETIC ANALYSIS: REPETITIVE DNA & HETEROCHROMATIN: KELOIDS & HYPERTENSION
A6A:遗传分析:重复 DNA
- 批准号:
6252532 - 财政年份:1997
- 资助金额:
$ 30.55万 - 项目类别:
相似国自然基金
上皮层形态发生过程中远程机械力传导的分子作用机制
- 批准号:31900563
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis
哺乳动物表皮的内在和外在纺锤体定向机制
- 批准号:
10585931 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis
哺乳动物表皮的内在和外在纺锤体定向机制
- 批准号:
10210677 - 财政年份:2021
- 资助金额:
$ 30.55万 - 项目类别:
Regulation of localized RhoA activity in dividing epithelial cells
分裂上皮细胞局部 RhoA 活性的调节
- 批准号:
9117562 - 财政年份:2015
- 资助金额:
$ 30.55万 - 项目类别:
Regulation of Hippo Signaling by Src-Family Kinases
Src 家族激酶对 Hippo 信号传导的调节
- 批准号:
8764489 - 财政年份:2014
- 资助金额:
$ 30.55万 - 项目类别:
Regulation of orofacial ectodermal polarity by the CLP protein, IRF6
CLP 蛋白 IRF6 对口面部外胚层极性的调节
- 批准号:
8525152 - 财政年份:2013
- 资助金额:
$ 30.55万 - 项目类别: