Molecular Basis of Renal Epithelial Cell-Cell Adhesion
肾上皮细胞-细胞粘附的分子基础
基本信息
- 批准号:10363722
- 负责人:
- 金额:$ 2.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdhesionsAdhesivesAffectArchitectureAreaAutosomal Dominant Polycystic KidneyBindingBiological AssayBiophysical ProcessCadherinsCaliberCanis familiarisCell AdhesionCell Adhesion MoleculesCell-Cell AdhesionCellsClinicalCollectionCommunication ResearchComplexCystCystic kidneyCytoskeletonDevelopmentDiseaseDissociationE-CadherinEnsureEpithelialEpithelial CellsEquilibriumFluorescenceG-Protein-Coupled ReceptorsGTP BindingGTP-Binding ProteinsGoalsIndividualInheritedIntegral Membrane ProteinIntercellular JunctionsKidneyKidney DiseasesKidney FailureLeadLipid BilayersMagnetismMeasuresMechanicsMediatingMembraneMicroscopyMolecularMutationPhysiciansPhysiologyPopulationProcessProtein SubunitsProteinsRegulationResearch TrainingResolutionRuptureScientistSignal PathwaySignal TransductionSumSupporting CellSystemTestingTimeTissuesTrainingTraumaTubular formationTwin Multiple BirthWeight-Bearing stateWorkbasebiophysical techniquesbiophysical toolscareercontrast imagingexperienceextracellularkidney cellkidney epithelial cellmechanical loadpolycystic kidney disease 1 proteinreconstitutionrenal epitheliumresilienceresponsesensorsingle moleculetransmission processurinary
项目摘要
Project Summary
The goal of this project is to determine how renal tubular epithelial cells achieve robust cell-cell adhesion
when faced with external forces. In the kidney, this occurs regularly as volume fluctuations distend the urinary
collecting system to varying degrees. An extreme example occurs in autosomal-dominant polycystic kidney
disease (ADPKD), the most common inherited renal disorder, where renal cysts can endure 1000-fold strain in
diameter, but can rupture upon acute trauma, leading to other serious consequences.
Approximately 85% of ADPKD cases are caused by mutations in the protein polycystin-1 (Pc-1), a
putative atypical G-protein coupled receptor that is involved in intracellular signal transduction via sequestration
of the G protein subunit G12. Relatively little is known about how dysregulated G12-mediated signaling in
ADPKD leads to the physical compromise of cell-cell adhesion. This gap persists, in part, because even simple
questions remain unanswered about how epithelial cells mechanically regulate cell-cell adhesions under strain.
This proposal will address two such fundamental questions, using the case of ADPKD as a concrete example of
how such regulation may be disrupted. To do so, I will make use of a semi-reconstituted system in which Madin-
Darby Canine Kidney (MDCK) epithelial cells form junctions with supported lipid bilayers (SLBs) decorated with
the cell adhesion molecule E-cadherin. This system enables both high resolution microscopy on live cells and
precise application of externally applied forces using magnetic tweezers.
Aim 1 will address the question of how cells ensure robust adhesion using the E-cadherin molecules that
bind between cells. High resolution total internal reflectance fluorescence (TIRF) and reflectance interference
contrast (RICM) imaging will be used to visualize the clustering of E-cadherin and the cell-SLB distance,
respectively, as a function of applied force. Aim 2 will address the question of how cells transmit external loads
through the collection of E-cadherin molecules. Fluorescent single-molecule tension sensors will be used to
directly measure single-molecule force distributions as a function of externally applied load. Finally, Aim 3 will
systematically perturb the Pc-1/G12 signaling axis to determine how cadherin-mediated adhesion and force
transmission may be dysregulated in ADPKD.
The results of this work will determine how signaling downstream of Pc-1 may contribute to the
dysregulation of cell-cell adhesion in ADPKD, and, more broadly, reveal the biophysical mechanisms that
epithelial cells use to maintain robust cell-cell adhesion even in the face of sometimes extreme external forces.
When combined with a research training plan emphasizing development in research communication and
incorporating continued clinical experience, this work will prepare me to pursue further training towards a career
as an independent physician-scientist studying disrupted tissue architecture in disease.
项目摘要
该项目的目的是确定肾小管上皮细胞如何实现可靠的细胞粘附
面对外力时。在肾脏中,随着体积波动的扩大,这种情况会定期发生
在不同程度上收集系统。一个极端的例子发生在常染色体主导的多囊肾脏中
疾病(ADPKD)是最常见的遗传疾病,肾脏囊肿可以忍受1000倍的菌株
直径,但可能会在急性创伤时破裂,从而导致其他严重的后果。
大约85%的ADPKD病例是由蛋白质多囊蛋白1(PC-1)突变引起的
假定的非典型G蛋白偶联受体,该受体与细胞内信号转导通过隔离
G蛋白亚基G12。关于如何失调的G12介导的信号传导的知之甚少
ADPKD导致细胞粘附的物理妥协。这个差距仍然存在,部分原因是
关于上皮细胞如何机械调节菌株下的细胞 - 细胞粘合剂的问题仍然没有提示。
该提案将以ADPKD为具体示例,解决两个这样的基本问题
这种法规如何破坏。为此,我将利用一个半稳定的系统,其中madin-
达比犬肾(MDCK)上皮细胞与装饰有支撑的脂质双层(SLB)形成连接
细胞粘附分子电子钙粘着蛋白。该系统可以在活细胞和
使用磁性镊子精确应用外部施加力。
AIM 1将解决细胞如何使用E-钙粘蛋白分子确保鲁棒性的问题。
结合细胞之间。高分辨率总内反射率荧光(TIRF)和反射率干扰
对比度(RICM)成像将用于可视化E-钙粘蛋白和细胞-SLB距离的聚类,
分别是施加力的函数。 AIM 2将解决细胞如何传输外部负载的问题
通过E-钙粘蛋白分子的收集。荧光单分子张力传感器将用于
直接测量单分子力分布作为外部施加载荷的函数。最后,AIM 3将
系统地扰动PC-1/G12信号轴,以确定钙粘蛋白介导的粘合剂和力如何
ADPKD中的传输可能失调。
这项工作的结果将决定PC-1下游的信号如何有助于
ADPKD中细胞细胞粘附的失调,更广泛地揭示了生物物理机制
上皮细胞即使面对有时极端的外力,也用于维持健壮的细胞粘合剂。
当与研究培训计划结合在一起,强调研究沟通中的发展和
融合了持续的临床经验,这项工作将使我为进一步的职业做好准备
作为一个独立的身体科学家研究疾病中的组织结构的破坏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vipul Vachharajani其他文献
Vipul Vachharajani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 2.28万 - 项目类别:
Developing novel therapies to improve blood stem cell transplantation outcomes
开发新疗法以改善造血干细胞移植结果
- 批准号:
10830194 - 财政年份:2023
- 资助金额:
$ 2.28万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 2.28万 - 项目类别:
The Role of Neutrophils in Ischemia/Reperfusion Injury following Acute Stroke
中性粒细胞在急性中风后缺血/再灌注损伤中的作用
- 批准号:
10606952 - 财政年份:2023
- 资助金额:
$ 2.28万 - 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:
10735681 - 财政年份:2023
- 资助金额:
$ 2.28万 - 项目类别: