Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
基本信息
- 批准号:10364119
- 负责人:
- 金额:$ 59.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-22 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAdvocateAnimal ModelBacteriaBar CodesBlood specimenCD4 Positive T LymphocytesCellsCessation of lifeChildClinicalColony-forming unitsCommunicable DiseasesComputational BiologyDataData AnalysesDepositionDiagnosisDimensionsDiseaseDisease ProgressionDoseExperimental ModelsFocal InfectionGene Expression ProfileGoalsGranulomaHIVHealthHematogenousHematogenous SpreadHumanImmuneImmunityImmunocompromised HostIndividualInfectionKineticsLungLung diseasesLung infectionsMediatingMessenger RNAMethodsModelingMonkeysMusMycobacterium tuberculosisMycobacterium tuberculosis H37RvPathogenesisPathologyPathway interactionsPatientsPlasmidsPopulationProbabilityProcessProtocols documentationPulmonary TuberculosisPulmonary alveolar structureResearchRiskScientistSiteSpleenSupporting CellSystemT cell responseTechniquesTestingTimeTissuesTuberculosisTuberculosis VaccinesVaccinesWhole Bloodbasedesignexperimental studygenetic signaturegraph theoryhuman diseaseimprovedin vivoinnovationinsightlung lobelung upper lobelymph nodesmacrophagemathematical modelmortalityneutrophilnovelnovel markerpathogenpredictive signaturevaccine development
项目摘要
Research Summary
Tuberculosis (TB), a disease caused by the bacteria Mycobacterium tuberculosis (Mtb), remains a major infec-
tious disease of humans in the world. After the initial local infection of one site in the lung Mtb somehow dissem-
inates in the lung and often spreads beyond the lung. In fact, extrapulmonary TB is a hallmark of the disease in
young children and immunocompromised adults that is difficult to diagnose and treat. Our understanding of Mtb
dissemination, both within the lung and beyond, remains limited, however. In this proposal we assembled a team
of scientists with expertise in computational biology (Ganusov, Aitchison, Duffy, Langston) and TB pathogenesis
(Urdahl, Sherman, Behar) to provide quantitative understanding of mechanisms of Mtb dissemination the lung
and systemically. To this end, we will be using a number of highly innovative techniques such as i) a novel animal
model of TB: infection of mice with an ultra low dose (ULD, 1-3 colony forming units, CFU) of Mtb along with a set
of 50 barcoded Mtb strains, ii) an Mtb strain H37Rv-pBP10 with the replication clock plasmid, allowing to estimate
how quickly bacteria are eliminated in vivo, and iii) mRNA-based gene signatures predicting bacterial numbers in
murine lungs and TB disease progression risk in humans. With three complementary specific aims we will pro-
vide detailed, quantitative understanding of fundamental processes of how Mtb disseminates from the deposition
in lung alveoli to the whole lung and systemically. In Aim 1 we will determine the pathway of Mtb dissemination
within the lung using a novel model of ULD-infected mice that mimics better human infection than many other
animal models. In particular, we will discriminate between alternative hypotheses of Mtb spread in the lungs
such the “bubble model” (in which Mtb spreads locally between lung lobes) and the “reseeding model” (in which
Mtb spreads hematogenously to different parts of the lung after disseminating systemically). In Aim 2 we will
determine the contribution of different cell populations, including Mtb-specific CD4 T cell response, to kinetics of
Mtb dissemination systemically in mice infected with conventional doses (CD, 150 CFU) of Mtb. To parameterize
best fit models we will use data from experiments with Mtb H37Rv carrying the replication clock plasmid pBP10.
Finally, in Aim 3 we will attempt to improve on our recently derived mRNA-based gene signatures predicting
CFU in murine lungs using cutting-edge graph theory-based methods of data dimensionality reduction. We will
also perform experiments and define a new signature predicting disseminated TB in mice, and test its accuracy
using data from monkeys and humans. Taken together, by combining experimental data from highly innovative
experiments involving novel techniques (ultra low dose infections, barcoded strains, replication clock plasmid,
microarray-based gene signatures) we will provide a quantitative understanding of how Mtb disseminates in the
lung and systemically in the body.
研究总结
结核病(TB)是一种由结核分枝杆菌(Mtb)引起的疾病,仍然是一种主要的传染病。
世界上人类的一种严重疾病,在肺部某一部位最初感染后,结核分枝杆菌以某种方式传播。
事实上,肺外结核病是该疾病的一个标志。
难以诊断和治疗的幼儿和免疫功能低下的成年人。
然而,在这项提议中,我们组建了一个团队。
拥有计算生物学专业知识的科学家(Ganusov、Aitchison、Duffy、Langston)和结核病发病机制
(Urdahl、Sherman、Behar)提供对 Mtb 肺部传播机制的定量理解
为此,我们将系统地使用许多高度创新的技术,例如 i) 一种新颖的动物。
结核病模型:用超低剂量(ULD,1-3 菌落形成单位,CFU)的 Mtb 和一组小鼠感染小鼠
50 个带有条形码的 Mtb 菌株,ii) 带有复制时钟质粒的 Mtb 菌株 H37Rv-pBP10,可以估计
细菌在体内被消除的速度有多快,以及 iii) 基于 mRNA 的基因特征预测体内细菌数量
通过三个互补的具体目标,我们将促进小鼠肺部和人类结核病进展风险。
详细、定量地了解 Mtb 如何从沉积物中传播的基本过程
在目标 1 中,我们将确定 Mtb 传播的途径。
使用一种新型 ULD 感染小鼠模型在肺内进行研究,该模型比许多其他模型更好地模拟人类感染
特别是,我们将区分结核分枝杆菌在肺部传播的替代假设。
例如“气泡模型”(其中 Mtb 在肺叶之间局部传播)和“重新播种模型”(其中
Mtb 在全身传播后通过血行传播到肺部的不同部位)。
确定不同细胞群(包括 Mtb 特异性 CD4 T 细胞反应)对动力学的贡献
感染常规剂量(CD,150 CFU) Mtb 的小鼠体内 Mtb 的全身传播 参数化。
为了建立最佳拟合模型,我们将使用携带复制时钟质粒 pBP10 的 Mtb H37Rv 实验数据。
最后,在目标 3 中,我们将尝试改进最近导出的基于 mRNA 的基因特征预测
我们将使用基于图论的尖端数据降维方法计算小鼠肺部的 CFU。
还进行实验并定义预测小鼠播散性结核病的新特征,并测试其准确性
通过结合高度创新的实验数据,综合使用来自猴子和人类的数据。
涉及新技术的实验(超低剂量感染、条形码菌株、复制时钟质粒、
基于微阵列的基因特征)我们将定量了解 Mtb 如何在
肺部和全身。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vitaly V. Ganusov其他文献
Vitaly V. Ganusov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vitaly V. Ganusov', 18)}}的其他基金
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10612718 - 财政年份:2022
- 资助金额:
$ 59.16万 - 项目类别:
Mathematical modeling of immune response to malaria
疟疾免疫反应的数学模型
- 批准号:
9238223 - 财政年份:2017
- 资助金额:
$ 59.16万 - 项目类别:
相似海外基金
Mathematical modeling of Mycobacterium tuberculosis dissemination
结核分枝杆菌传播的数学模型
- 批准号:
10612718 - 财政年份:2022
- 资助金额:
$ 59.16万 - 项目类别:
Mobile Health Tools to Promote Health in Adults with FASD
移动健康工具促进 FASD 成人健康
- 批准号:
10331884 - 财政年份:2021
- 资助金额:
$ 59.16万 - 项目类别:
Cerebellar biobehavioral markers in cannabis users
大麻使用者的小脑生物行为标记
- 批准号:
10359209 - 财政年份:2019
- 资助金额:
$ 59.16万 - 项目类别:
Cerebellar biobehavioral markers in cannabis users
大麻使用者的小脑生物行为标记
- 批准号:
9910377 - 财政年份:2019
- 资助金额:
$ 59.16万 - 项目类别:
Percutaneous Ultrasound Gastrostomy (PUG): Engineering and Feasibility Assessment of a Pediatric Device
经皮超声胃造口术 (PUG):儿科设备的工程和可行性评估
- 批准号:
9909329 - 财政年份:2019
- 资助金额:
$ 59.16万 - 项目类别: