MS Diagnostic Bacterial Identification Library
MS 诊断细菌鉴定库
基本信息
- 批准号:10356152
- 负责人:
- 金额:$ 46.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAntibioticsAntimicrobial ResistanceBacteriaBacterial InfectionsBacterial ProteinsBar CodesBiologicalBiological AssayBloodCardiolipinsCell Culture TechniquesCellsCessation of lifeChemicalsClinicalClinical MicrobiologyColistinCommunicable DiseasesComplexComputer softwareDataDetectionDevelopmentDiagnosticEscherichia coliEventFaceFailureFecesFinancial HardshipFundingGeneral HospitalsGlycerophospholipidsGlycolipidsGrantGrowthHealth care facilityHealth systemHealthcareHourIndividualInfectionIntensive CareIonsLaboratoriesLaboratory ResearchLength of StayLibrariesLipid ALipidsLiquid substanceMALDI-TOF Mass SpectrometryMachine LearningMass Spectrum AnalysisMembraneMembrane LipidsMethodologyMethodsMicrobeMinorModelingMorbidity - disease rateMycosesOrganismPatientsPatternPeer ReviewPhenotypeProcessProteinsProtocols documentationPublicationsRiversSamplingSepsisSolidSpecimenSpeedSphingolipidsSterolsStructureTechnologyTimeUrinary tract infectionUrineWorkaccurate diagnosisantimicrobialbasebiodefensechemical fingerprintingchemotherapyclinically relevantcombatcostdesigndetection limitdiagnostic platformexperimental studyfeature extractionfungusglobal healthimprovedinnovationlipoteichoic acidmicrobialmortalitynew technologynovelnovel diagnosticsnovel therapeuticspathogenpathogenic funguspoint of carerapid diagnosisresistant strainsimulationsoftware developmentstool sampletandem mass spectrometrytoolwardwound
项目摘要
PROJECT SUMMARY
Infectious diseases have a substantial global health impact. Clinicians need rapid and accurate diagnoses of
infections to direct patient treatment and improve antibiotic stewardship, but current methodologies face severe
limitations in this regard. In the first funding cycle of our MPI grant “GM111066 - MS diagnostic bacterial
identification library,” we produced a novel diagnostic platform in which microbial membrane glycolipids
analyzed by mass spectrometry represent chemical “fingerprints” that were then used to differentiate Gram-
negative and –positive and fungal isolates after mono- or poly-microbial growth in standard laboratory medias
or complex biological (urine, blood bottles, and would effluent). In the second funding cycle, we aim to improve
the diagnostic as discussed below.
At the start this project, it had not been previously shown that bacterial or fungal membrane lipids could
provide a unique chemical signature or barcode that could be used for reliable pathogen identification. The fact
that these lipids (Gram-: LPS/lipid A, Gram+: Lipoteichoic acid/cardiolipin, Fungi: glycerophospholipids,
sphingolipids, and sterols) are present in high abundance (~106 copies per cell) makes them easily extractable
with a single rapid LPS-based protocol (less than 60 minutes from sample to MS identification). Importantly, for
clinical use, we successfully used our platform to solve these four major unmet needs from the protein-based
phenotyping approach: 1) removed the need for growth prior to MS analysis, 2) identification of bacterial and
fungal isolates with a single extraction protocol, 3) identification directly from complex biological fluids,
including urine, BAL fluid, wound effluent, and blood bottles, and 4) antimicrobial resistant strains could be
distinguished from the related susceptible strain. Finally, based on our thirteen peer-reviewed publications from
the first funding period and extensive preliminary data, we believe we have proven our highly innovative
original hypothesis and even advanced it past the original aims by using a design of experiment (DOE) process
to allow identification in under an hour direct from specimen.
In the second funding cycle, we propose to further innovate by i) using DOE to improve limit of detection
(LOD) from 106 to 103 which is the threshold for urinary tract infections; ii) extend the assay to direct analysis
of urine and stool samples without culture; iii) develop machine learning approaches to improve identification
of individual bacteria from polymicrobial infections; iv) expand detection of antimicrobial resistance beyond
colistin; v) develop a method for identification and structure analysis of lipids isolated from 100-1000 cells; and
vi) vastly expand our ability to identify pathogenic fungi, which are a growing healthcare issue, and Gram-
positive organisms.
项目概要
传染病对全球健康产生重大影响。临床医生需要快速、准确的诊断。
感染指导患者治疗并改善抗生素管理,但目前的方法面临着严峻的挑战
在我们的 MPI 拨款“GM111066 - MS 诊断细菌”的第一个资助周期中。
鉴定库”,我们制作了一个新颖的诊断平台,其中微生物膜糖脂
通过质谱分析代表化学“指纹”,然后用于区分革兰氏阴性菌
标准实验室培养基中单一或多微生物生长后的阴性和阳性以及真菌分离株
或复杂的生物(尿液、血瓶和废水)在第二个资助周期中,我们的目标是改进。
诊断如下所述。
在该项目开始时,之前并未表明细菌或真菌膜脂可以
提供可用于可靠的病原体识别的独特化学特征或条形码。
这些脂质(革兰氏-:LPS/脂质A,革兰氏+:脂磷壁酸/心磷脂,真菌:甘油磷脂,
鞘脂和甾醇)的含量很高(每个细胞约 106 个拷贝),因此很容易提取
重要的是,使用基于 LPS 的单一快速方案(从样品到 MS 鉴定不到 60 分钟)。
临床使用中,我们成功地利用我们的平台解决了基于蛋白质的四大未满足的需求
表型分析方法:1) 消除了 MS 分析之前生长的需要,2) 细菌和细菌的鉴定
使用单一提取方案分离真菌,3) 直接从复杂的生物液体中进行鉴定,
包括尿液、BAL 液、伤口流出物和血瓶,4) 可能存在抗菌药物耐药菌株
最后,根据我们的十三篇同行评审出版物进行区分。
第一个资助期和广泛的初步数据,我们相信我们已经证明了我们的高度创新
最初的假设,甚至通过使用实验设计 (DOE) 过程将其超越最初的目标
可以在一小时内直接从样本中进行鉴定。
在第二个资助周期中,我们建议通过 i) 使用 DOE 来进一步创新,以提高检测限
(LOD) 从 106 到 103,这是尿路感染的阈值 ii) 将测定扩展到直接分析;
未经培养的尿液和粪便样本;iii) 开发机器学习方法来改进识别
多种微生物感染中的单个细菌;iv) 将抗菌药物耐药性的检测范围扩大到其他范围
v) 开发一种从 100-1000 个细胞中分离的脂质的鉴定和结构分析方法;
vi) 极大地扩展了我们识别病原真菌的能力,这是一个日益严重的医疗保健问题,而革兰氏阴性菌
阳性生物体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert K Ernst其他文献
Robert K Ernst的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert K Ernst', 18)}}的其他基金
Microbial adaptation of Pseudomonas lipid A structure in CF airway disease progress
假单胞菌脂质 A 结构在 CF 气道疾病进展中的微生物适应
- 批准号:
10722599 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Mid-Atlantic Microbial Pathogenesis Meeting 2022
2022 年大西洋中部微生物发病机制会议
- 批准号:
10504721 - 财政年份:2022
- 资助金额:
$ 46.35万 - 项目类别:
Protection Against Gram-Negative Sepsis Conferred by Lipid A-Based Structural Variants
基于脂质 A 的结构变体可预防革兰氏阴性脓毒症
- 批准号:
9753900 - 财政年份:2016
- 资助金额:
$ 46.35万 - 项目类别:
Development of a Rationally Attenuated Live Vaccine for Francisella tularensis
土拉弗朗西斯菌合理减毒活疫苗的研制
- 批准号:
8650788 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
Development of a Rationally Attenuated Live Vaccine for Francisella tularensis
土拉弗朗西斯菌合理减毒活疫苗的研制
- 批准号:
8511015 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
Immunotherapeutic Potential of Modified Lipooligosaccharides and Lipid A's
修饰脂寡糖和脂质 A 的免疫治疗潜力
- 批准号:
8584054 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
Immunotherapeutic Potential of Modified Lipooligosaccharides and Lipid A's
修饰脂寡糖和脂质 A 的免疫治疗潜力
- 批准号:
8675799 - 财政年份:2013
- 资助金额:
$ 46.35万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Vanderbilt Antibody and Antigen Discovery for Clostridioides difficile Vaccines
艰难梭菌疫苗的范德比尔特抗体和抗原发现
- 批准号:
10625686 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Mechanisms of cardiomyocyte dysfunction in pediatric septic shock
小儿感染性休克心肌细胞功能障碍的机制
- 批准号:
10580624 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别:
Development of a model of Gonococcal conjunctivitis for vaccine evaluations
开发用于疫苗评估的淋菌性结膜炎模型
- 批准号:
10740430 - 财政年份:2023
- 资助金额:
$ 46.35万 - 项目类别: