Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
基本信息
- 批准号:8619586
- 负责人:
- 金额:$ 0.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-03-01 至 2014-04-01
- 项目状态:已结题
- 来源:
- 关键词:AddressAdipose tissueAdultApoptosisAutologous TransplantationBiologicalBone DevelopmentBone MarrowBone RegenerationBone TissueBone TransplantationBone callusBone necrosisCartilageCellsChondrocytesChondrogenesisClinicalDataDefectDevelopmentDevelopmental ProcessEncapsulatedEngineeringEventExcisionExtracellular Matrix ProteinsFailureFractureFracture HealingGeneticGoalsGoldHealedHealthHistologicHumanHydrogelsImpaired wound healingIn VitroLabelMatrilysinMatrix MetalloproteinasesMechanicsMesenchymal Stem CellsMolecularMultipotent Stem CellsMusMusculoskeletalNatural regenerationOperative Surgical ProceduresOsteogenesisOsteotomyOutcomePathway interactionsPhenotypeProceduresProcessProductivityPropertyProtocols documentationResearchResearch ProposalsSeriesSkeletonSpinal FusionStem cellsSystemTechniquesTechnologyTestingTimeTissue EngineeringTissue GraftsTissuesTranslatingTranslationsTransplantationTraumaUnited StatesVascularizationWorkbasebonebone qualitycareerclinical applicationclinically relevantdesignhealingimprovedin vivoin vivo Modelintramembranous bone formationlong bonemeetingsmineralizationmouse modelnew technologypoly(ethylene glycol)diacrylaterepairedresponsescaffoldskillssuccesstibiatumor
项目摘要
DESCRIPTION (provided by applicant): Bone graft technologies currently available to treat large segmental defects typically generate replacement tissue with poor vascularity and poor host integration that leads to clinical failures associated with osteonecrosis or dislodgement. As a result, there is a significant unmet need to improve the clinical outcome in procedures treating trauma, fracture non-unions, spinal fusion, osteonecrosis, and segmental bone osteotomies such as those created upon tumor removal. Tissue engineering is a promising strategy to promote bone regeneration. However, the general approach in bone tissue engineering to directly stimulate bone formation through osteogenesis has been largely unsuccessful. In this proposal we approach bone regeneration through a cartilage intermediate. This process, called endochondral ossification, is the normal developmental mechanism for formation of long bones, and is the pathway through which the majority of fractures heal. I hypothesize that bone regeneration through a chondrogenic intermediate will produce a neotissue that resembles the native bone in both form and function. To test this hypothesis I will compare bone regeneration from a cartilage graft to the gold-standard bone graft technique in a critically sized murine bone defect. In support of this approach, I have preliminary data demonstrating that a cartilage graft containing hypertrophic chondrocytes promotes a well-vascularized and integrated bone regenerate. In addition to evaluating the quality of bone regenerated by a cartilage graft versus bone graft, I will determine the mechanism through which repair occurs. According to my hypothesis, bone regeneration will occur through the process of endochondral ossification, resulting in apoptosis of hypertrophic chondrocytes and producing a bone regenerate that is host derived. However, preliminary data indicate that donor cartilage is contributing to the bone regenerate through an unresolved mechanism. I will use genetic and cell labeling techniques to trace the cell phenotype throughout this repair process to evaluate how the cartilage heals large bone defects. The second aim of this research proposal is to translate the concept of promoting bone regeneration through endochondral ossification into a clinically viable technology. To accomplish this I will design biologically modified synthetic scaffolds that promote formation of hypertrophic cartilage from mesenchymal stem cells (MSCs). Scaffold will be designed with variable degradation rates tuned to the process of endochondral ossification to optimize bone regeneration in vivo. In earlier studies I have characterized hypertrophic maturation of MSCs in tissue-engineered scaffolds and developed a MMP-7 bioresponsive system tuned to chondrogenesis. Together these aims address an important clinical problem with a translatable technology capable of improving current bone regeneration techniques. Furthermore this project was specifically designed to meet my long-term career objective related to musculoskeletal regeneration by utilizing multipotent progenitor cells and bioresponsive scaffolds to recapitulate normal development and/or repair mechanisms in clinically relevant in vivo models.
描述(由申请人提供):目前可用于治疗大节段缺损的骨移植技术通常会产生血管供应不良和宿主整合不良的替代组织,从而导致与骨坏死或移位相关的临床失败。因此,对于改善治疗创伤、骨折不愈合、脊柱融合、骨坏死和节段骨截骨术(例如肿瘤切除后产生的截骨术)的手术的临床结果存在显着的未满足需求。组织工程是促进骨再生的一种有前途的策略。然而,骨组织工程中通过成骨直接刺激骨形成的一般方法基本上不成功。在这个提案中,我们通过软骨中间体实现骨再生。这一过程称为软骨内骨化,是长骨形成的正常发育机制,也是大多数骨折愈合的途径。我假设通过软骨形成中间体进行的骨再生将产生在形式和功能上类似于天然骨的新组织。为了验证这一假设,我将在临界尺寸的小鼠骨缺损中比较软骨移植的骨再生与金标准骨移植技术。为了支持这种方法,我有初步数据表明,含有肥大软骨细胞的软骨移植物可以促进血管化和整合的骨再生。除了评估软骨移植与骨移植再生骨的质量之外,我还将确定修复发生的机制。根据我的假设,骨再生将通过软骨内骨化过程发生,导致肥大软骨细胞凋亡并产生源自宿主的骨再生。然而,初步数据表明,供体软骨通过一种尚未解决的机制促进骨骼再生。我将使用遗传和细胞标记技术来追踪整个修复过程中的细胞表型,以评估软骨如何治愈大骨缺损。该研究计划的第二个目标是将通过软骨内骨化促进骨再生的概念转化为临床可行的技术。为了实现这一目标,我将设计经过生物修饰的合成支架,促进间充质干细胞(MSC)形成肥大软骨。支架将设计成具有可变降解率,以适应软骨内骨化过程,以优化体内骨再生。在早期的研究中,我表征了组织工程支架中 MSC 的肥大成熟,并开发了一种针对软骨形成调整的 MMP-7 生物反应系统。这些目标共同通过能够改进当前骨再生技术的可转化技术解决了一个重要的临床问题。此外,该项目是专门为满足我与肌肉骨骼再生相关的长期职业目标而设计的,通过利用多能祖细胞和生物响应支架来重现临床相关体内模型中的正常发育和/或修复机制。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Promoting Endochondral Bone Repair Using Human Osteoarthritic Articular Chondrocytes.
使用人骨关节炎关节软骨细胞促进软骨内骨修复。
- DOI:
- 发表时间:2016-03
- 期刊:
- 影响因子:0
- 作者:Bahney, Chelsea S;Jacobs, Linsey;Tamai, Robert;Hu, Diane;Luan, Tammy F;Wang, Miqi;Reddy, Sanjay;Park, Michelle;Limburg, Sonja;Kim, Hubert T;Marcucio, Ralph;Kuo, Alfred C
- 通讯作者:Kuo, Alfred C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chelsea Shields Bahney其他文献
Chelsea Shields Bahney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chelsea Shields Bahney', 18)}}的其他基金
Therapeutic Application of Painless Nerve Growth Factor to Accelerate Endochondral Fracture Repair
无痛神经生长因子加速软骨内骨折修复的治疗应用
- 批准号:
10211755 - 财政年份:2021
- 资助金额:
$ 0.47万 - 项目类别:
Improved Tools for Accessing Pain Following Fracture and Enabling Standardized Pain Phenotyping
改进用于获取骨折后疼痛并实现标准化疼痛表型的工具
- 批准号:
10856944 - 财政年份:2021
- 资助金额:
$ 0.47万 - 项目类别:
Therapeutic Application of Painless Nerve Growth Factor to Accelerate Endochondral Fracture Repair
无痛神经生长因子加速软骨内骨折修复的治疗应用
- 批准号:
10882542 - 财政年份:2021
- 资助金额:
$ 0.47万 - 项目类别:
Dual-Delivery of Bioactive and Anti-Microbial Nanowires for Accelerated Bone Repair
双重递送生物活性和抗菌纳米线以加速骨修复
- 批准号:
10630656 - 财政年份:2021
- 资助金额:
$ 0.47万 - 项目类别:
Therapeutic Application of Painless Nerve Growth Factor to Accelerate Endochondral Fracture Repair
无痛神经生长因子加速软骨内骨折修复的治疗应用
- 批准号:
10662506 - 财政年份:2021
- 资助金额:
$ 0.47万 - 项目类别:
Dual-Delivery of Bioactive and Anti-Microbial Nanowires for Accelerated Bone Repair
双重递送生物活性和抗菌纳米线以加速骨修复
- 批准号:
10630656 - 财政年份:2021
- 资助金额:
$ 0.47万 - 项目类别:
Therapeutic Application of Painless Nerve Growth Factor to Accelerate Endochondral Fracture Repair
无痛神经生长因子加速软骨内骨折修复的治疗应用
- 批准号:
10211755 - 财政年份:2021
- 资助金额:
$ 0.47万 - 项目类别:
Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
- 批准号:
8256413 - 财政年份:2012
- 资助金额:
$ 0.47万 - 项目类别:
Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
- 批准号:
8446609 - 财政年份:2012
- 资助金额:
$ 0.47万 - 项目类别:
Tissue engineering application of endochondral ossification for bone regeneration
软骨内骨化在骨再生中的组织工程应用
- 批准号:
8256413 - 财政年份:2012
- 资助金额:
$ 0.47万 - 项目类别:
相似国自然基金
脂肪组织新型内分泌因子的鉴定及功能研究
- 批准号:82330023
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
基于“脂肪-肝脏对话”探讨脂肪组织代谢重编程相关活性代谢因子AMRM2调控RNF8/RXRα/PPARα轴在肝脏脂质代谢稳态维持中的作用与机制
- 批准号:82300971
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
巨噬细胞GP73-CXCL5调节脂肪组织适应性产热的机制研究
- 批准号:32300573
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
棕色脂肪组织源外泌体circ-JARID2调控线粒体功能在延缓卵巢衰老中的作用及机制研究
- 批准号:82301848
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of neuronal function by mitochondrial uncoupling
通过线粒体解偶联调节神经元功能
- 批准号:
10664198 - 财政年份:2023
- 资助金额:
$ 0.47万 - 项目类别:
Identifying Proteomic Markers of Exercise Training in Heart Failure
识别心力衰竭运动训练的蛋白质组标记
- 批准号:
10663612 - 财政年份:2023
- 资助金额:
$ 0.47万 - 项目类别:
Regulation of neuronal function by mitochondrial uncoupling
通过线粒体解偶联调节神经元功能
- 批准号:
10664198 - 财政年份:2023
- 资助金额:
$ 0.47万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 0.47万 - 项目类别:
PDGFRB Signaling in Progressive Skin Disease
进行性皮肤病中的 PDGFRB 信号传导
- 批准号:
10583948 - 财政年份:2023
- 资助金额:
$ 0.47万 - 项目类别: