Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
基本信息
- 批准号:10198019
- 负责人:
- 金额:$ 16.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:37 weeks gestationAccountingAcute DiseaseAddressAdverse eventAffectAreaAwardBig DataBioinformaticsBiometryBirthBirth WeightBostonBronchopulmonary DysplasiaCardiacChronicClinicalClinical DataClinical MedicineCollaborationsComputational TechniqueConceptionsDataData AnalysesData ScientistData SourcesDatabasesDiagnosisDoctor of PhilosophyEducationElectronic Health RecordEnvironmentEventFutureGestational AgeGoalsGraduate DegreeGrantHealthHealthcareHealthcare SystemsHeartHeart DiseasesHospitalsHuman PathologyIncidenceInfantInformaticsInstitutional Review BoardsInsurance CarriersLifeLiquid substanceLungLung diseasesMachine LearningMeasuresMentorsMentorshipMethodologyModelingMonitorMorbidity - disease rateNatureNecrotizing EnterocolitisNeonatalNeonatal Intensive Care UnitsNeonatologyOutcomePatent Ductus ArteriosusPatientsPatternPediatricsPerformancePerinatalPhysiciansPhysiologicalPopulationPregnancyPregnant WomenPremature BirthPremature InfantPremature LaborReproducibilityResearchResearch PersonnelResearch SupportRestRetinopathy of PrematurityRiskRisk EstimateScientistSepsisSideSignal TransductionSourceTeaching HospitalsTechniquesTimeTrainingTranslatingUpdateVulnerable PopulationsWorkclinical practiceclinical predictorsdata resourcedeep learningdeep learning algorithmdesigneducation planningelectronic dataexperienceimprovedinsurance claimsmortalitypeerportabilityprediction algorithmpredictive modelingprematureprognosticrespiratory distress syndromerisk predictionsocialstatistical and machine learningstatisticsstructured data
项目摘要
RESEARCH SUMMARY
The goal of this award is to provide Andrew Beam, PhD with research support and comprehensive mentoring
designed to transition him to an independent investigator in perinatal and neonatal informatics. Preterm labor
(PTL) is labor which occurs before 37 weeks of gestation and carries with it enormous health and financial
consequences. Preterm infants have some of the highest levels of pulmonary and cardiac morbidity, yet
machine-learning techniques for these important outcomes remains under developed. The research strategy is
focused developing predictive models for two very important clinical scenarios using large sources of existing
healthcare data. The focus of Specific Aim 1 develops a new form of machine learning known as deep learning
for predicting PTL in pregnant women, while the focus of Specific Aim 2 investigates the use of deep learning
for predicting clinical trajectories of preterm infants in the NICU. Currently, management and anticipation of
both clinical scenarios is challenging and advancement in our predictive capacity could dramatically improve
the quality and efficiency of the healthcare system. These models will be built using an existing database of 50
million patient-lives obtained through a partnership with a major US health insurer. Specific Aim 3 seeks to
understand how the models constructed using this unique data resource translate and generalize to data from
the electronic health records of Boston-area hospitals, which is a key concern for all healthcare data scientists.
The education plan focuses on augmenting Dr. Beam’s graduate degrees in statistics and bioinformatics with
additional training in clinical medicine and human pathology. This additional education will grant Dr. Beam a
deeper understanding of the clinical problems faced by these populations and will allow for more fluid
collaborations with clinicians in the future. The composition of Dr. Beam’s mentorship committee, which
includes expertise in neonatology, biostatistics, and translational informatics, reflects his long-term desire to be
quantitative scientist who works side-by-side practicing physicians so that quantitative research is translated
into impactful clinical practice.
研究摘要
该奖项的目的是为Andrew Beam,PhD提供研究支持和全面的心理
旨在将他过渡到围产期和新生儿信息的独立调查员。早产
(PTL)是在妊娠37周之前发生的劳动
结果。早产儿具有最高水平的肺和心脏发病率
这些重要结果的机器学习技术仍在开发中。研究策略是
专注于使用现有的大量来源的两个非常重要的临床场景开发预测模型
医疗保健数据。特定目标1的重点1开发了一种新的机器学习形式,称为深度学习
用于预测孕妇的PTL,而特定目标的重点2调查了深度学习的使用
用于预测NICU早产儿的临床轨迹。目前,管理和期待
两种临床方案都具有挑战性,并且在我们的预测能力方面的进步可能会大大改善
医疗保健系统的质量和效率。这些模型将使用50的现有数据库构建
通过与美国主要健康保险公司建立合作伙伴关系获得的百万个患者生活。特定目标3试图
了解使用此独特数据资源构建的模型如何转化并推广到来自
波士顿地区医院的电子健康记录,这是所有医疗保健数据科学家的关键问题。
该教育计划的重点是增强Beam博士在统计和生物信息学领域的研究生学位
临床医学和人类病理学的其他培训。这种额外的教育将授予Beam博士
对这些人群所面临的临床问题的更深入了解,将允许更多的流动性
将来与临床医生的合作。 Beam博士的Mentalship委员会的组成,该委员会
包括新生儿学,生物统计学和翻译信息的专业知识,反映了他的长期愿望
并排工作医生的定量科学家,以便翻译定量研究
进入有影响力的临床实践。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew L. Beam其他文献
534 Regional differences in utilization of 17α-hydroxyprogesterone caproate (17OHP)
- DOI:
10.1016/j.ajog.2020.12.555 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Jessica M. Hart;Joe B. Hakim;Blair J. Wylie;Andrew L. Beam - 通讯作者:
Andrew L. Beam
TIER: Text-Image Entropy Regularization for CLIP-style models
TIER:CLIP 样式模型的文本图像熵正则化
- DOI:
10.48550/arxiv.2212.06710 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Anil Palepu;Andrew L. Beam - 通讯作者:
Andrew L. Beam
Andrew L. Beam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew L. Beam', 18)}}的其他基金
Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
- 批准号:
10646498 - 财政年份:2019
- 资助金额:
$ 16.63万 - 项目类别:
Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
- 批准号:
10470098 - 财政年份:2019
- 资助金额:
$ 16.63万 - 项目类别:
Predicting Pulmonary and Cardiac Morbidity in Preterm Infants with Deep Learning
通过深度学习预测早产儿的肺部和心脏发病率
- 批准号:
9928552 - 财政年份:2019
- 资助金额:
$ 16.63万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
Gain-of-function toxicity in alpha-1 antitrypsin deficient type 2 alveolar epithelial cells
α-1 抗胰蛋白酶缺陷型 2 型肺泡上皮细胞的功能获得毒性
- 批准号:
10751760 - 财政年份:2024
- 资助金额:
$ 16.63万 - 项目类别:
Role of Gastrointestinal GCPII in Visceral Pain Signaling
胃肠道 GCPII 在内脏疼痛信号传导中的作用
- 批准号:
10678103 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:
10641225 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
- 批准号:
10912318 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别:
Uncovering sleep and circadian mechanisms contributing to adverse metabolic health
揭示导致不良代谢健康的睡眠和昼夜节律机制
- 批准号:
10714191 - 财政年份:2023
- 资助金额:
$ 16.63万 - 项目类别: