Scaffolds for culture and transplantation of islet organoids
用于胰岛类器官培养和移植的支架
基本信息
- 批准号:10197921
- 负责人:
- 金额:$ 55.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAllogenicAmericanAngiogenic FactorArchitectureBeta CellBlood GlucoseBlood VesselsCell Differentiation processCell LineCell TransplantationCellsClinicalClinical TreatmentCollaborationsConsultD CellsDevelopmentDiabetes MellitusDiabetic mouseDonor personEndocrineEngraftmentEnvironmentEventExtracellular Matrix ProteinsExtrahepaticFamily suidaeFatty acid glycerol estersFlow CytometryGene ExpressionGlucoseHepaticHeterogeneityHomologous TransplantationHumanHyperglycemiaHypoglycemiaImmune responseImmunosuppressionIn VitroInsulinInsulin-Dependent Diabetes MellitusInvestigationIslets of Langerhans TransplantationLeadLifeLiverMethodsMonitorMusOrganoidsPancreasPatientsPeritonealPolymersProcessReporterResearchResearch PersonnelRodentSiteSourceStem cell transplantStructureStructure of beta Cell of isletTechniquesTestingTherapeuticTissuesTransplantationVascularizationabdominal fatautoimmune pathogenesisbasecell typeclinically relevantclinically translatabledesigndesign and constructionendocrine pancreas developmenteuglycemiahigh riskhuman pluripotent stem cellin vivoinnovationinsulin secretionisletmouse modelorganoid transplantationpost-transplantprogenitorrestorationscaffoldstem cell differentiationtooltranscription factor
项目摘要
Allogeneic islets transplanted into the liver have shown promise clinically for treatment of Type 1 Diabetes
(T1D), yet their supply is limited. These limitations have led to the investigation of human pluripotent stem cells
(hPSC) as an unlimited source of functional β-cells. Multiple investigators have demonstrated the feasibility of
differentiating hPSC to immature β-cells in vitro and successfully transplanted these cells into rodents which
allowed further maturation into glucose-responsive insulin-producing β-cells. The main challenges of deriving
β-cells in vitro from hPSCs for transplantation are i) the efficiency and consistency of the hPSC differentiation,
and ii) previous transplants are typically performed at non-translatable sites, and the adaptation to clinically
translatable sites adds additional inefficiencies. Herein, we propose an innovative strategy of culturing the
hPSCs on microporous polymer scaffolds as a platform to obtain efficient differentiation of hPSCs to islet
organoids in vitro, which contain multiple endocrine cell types that are found within an islet. Furthermore, the
organoids can be directly transplanted on scaffolds at a clinically relevant site, namely the peritoneal fat,
without disrupting the niche that develops within the pores. PI Dr. Shea has developed the scaffolds for the
transplantation of primary islets into mice at a clinically translatable site that allows for efficient engraftment and
function, and the reversal of hyperglycemia with a minimal islet mass. co-PI Dr. Spence is a developmental
biologist with expertise in organoid culture that is collaborating on the scaffold design and analysis of in vivo
maturation. Aim 1 will test the hypothesis that the differentiation of hPSC-derived pancreatic progenitors on 3D
microporous scaffolds can increase the efficiency for forming islet organoids in vitro. Scaffolds will be created
with controlled architecture and modified with extracellular matrix (ECM) proteins to facilitate organization and
differentiation of cells into islet structures. The maturity of the organoids and cellular subpopulations will be
monitored through flow cytometry, gene expression of pancreatic makers, the activity of key transcription
factors, and insulin secretion. Established conditions for differentiating hPSC to β-cells will be used as a
control. Aim 2 will investigate the in vivo maturation and function following transplantation of scaffolds with islet
organoids in the pores. We will investigate the survival and maturation of the organoids upon transplantation
into the peritoneal fat, considered a translatable site, and observe the restoration of euglycemia in diabetic
mouse models. Dr. Jan Stegemann will consult on vascularization of the graft. In collaboration with a leading
islet biologist, Dr. Peter Arvan, we will assess the function of the transplanted islet organoids relative to that of
native islets, and analyze the cells by flow cytometry and gene expression for relevant pancreatic markers and
sub-populations that are observed. Collectively, these studies will develop scaffolds as a platform that can
facilitate manufacturing of the organoids, which can be readily transplanted while maintaining the niche that
maximally supports engraftment and function.
移植到肝脏的同种异体胰岛已在临床上表现出有望治疗1型糖尿病
(T1D),但他们的供应量有限。这些局限性导致了人类多能干细胞的投资
(HPSC)作为功能性β细胞的无限来源。多个调查人员证明了
在体外将HPSC区分为未成熟的β细胞,并成功将这些细胞移植到啮齿动物中
可以进一步成熟到产生葡萄糖的胰岛素β细胞中。推导的主要挑战
从HPSC进行移植的体外β细胞是i)HPSC分化的效率和一致性,
ii)以前的移植通常在不可转移的位点进行,并适应临床
可翻译的站点增加了额外的效率低下。在此,我们提出了一种创新的策略来培养
微孔聚合物支架上的HPSC作为一个平台,以获得HPSC的有效分化为胰岛
体外的器官,其中包含在胰岛内发现的多种内分泌细胞类型。此外,
可以直接在临床相关部位的支架上直接移植器官,即腹膜脂肪,
而不会破坏毛孔内发展的利基市场。 Pi Shea博士为
将主要胰岛移植到临床上可翻译的部位中的小鼠中,该部位允许有效的植入和
功能,以及具有最小胰岛质量的高血糖的逆转。 Co-Pi Spence博士是一种发展
生物学家在器官文化方面具有专业知识,这是在体内进行脚手架设计和分析的合作的生物学家
成熟。 AIM 1将检验以下假设:3D上HPSC衍生的胰腺祖细胞的分化
微孔支架可以提高体外形成胰岛类器官的效率。将创建脚手架
使用受控的体系结构,并用细胞外基质(ECM)蛋白进行修饰,以促进组织和
细胞分化为胰岛结构。器官的成熟度和细胞亚群将是
通过流式细胞仪监测,胰腺制造商的基因表达,关键转录的活性
因素和胰岛素分泌。将HPSC区分为β细胞的已建立条件将用作
控制。 AIM 2将研究带有胰岛支架移植后体内成熟和功能
孔中的器官。我们将在移植后研究器官的生存和成熟
进入腹膜脂肪,被认为是可翻译的部位,并观察糖尿病中的尤利克血症的恢复
鼠标模型。 Jan Stegemann博士将咨询有关移植的血管化。与领先的
胰岛生物学家彼得·阿尔文(Peter Arvan)博士,我们将评估移植的胰岛类器官的功能
天然胰岛,并通过流式细胞仪和基因表达分析相关胰腺标记和基因表达
观察到的子选集。总的来说,这些研究将开发脚手架作为一个可以
促进器官的制造,可以轻易移植,同时保持利基市场
Maxly支持植入和功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lonnie D Shea其他文献
Lonnie D Shea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lonnie D Shea', 18)}}的其他基金
Scaffolds for culture and transplantation of islet organoids
用于胰岛类器官培养和移植的支架
- 批准号:
10380872 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
Scaffolds for culture and transplantation of islet organoids
用于胰岛类器官培养和移植的支架
- 批准号:
9887396 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
Microporous scaffolds for enhancing efficiency of beta-cell progenitor maturation in vitro and in vivo
用于提高 β 细胞祖细胞体外和体内成熟效率的微孔支架
- 批准号:
9331833 - 财政年份:2017
- 资助金额:
$ 55.07万 - 项目类别:
Integrated Structural BMP2 Carrier Systems for Cervical Spine Fusion
用于颈椎融合的集成结构 BMP2 载体系统
- 批准号:
8720503 - 财政年份:2011
- 资助金额:
$ 55.07万 - 项目类别:
Protein-Releasing Microporous Scaffolds for Cell Replacement Therapy
用于细胞替代疗法的蛋白质释放微孔支架
- 批准号:
8977538 - 财政年份:2010
- 资助金额:
$ 55.07万 - 项目类别:
Human islet transplantation on microporous scaffolds
微孔支架上的人胰岛移植
- 批准号:
7789811 - 财政年份:2009
- 资助金额:
$ 55.07万 - 项目类别:
Human islet transplantation on microporous scaffolds
微孔支架上的人胰岛移植
- 批准号:
7930629 - 财政年份:2009
- 资助金额:
$ 55.07万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Engineering detours around the biologic barriers to allogeneic, iPSC-derived CAR T immunotherapy
工程绕开了同种异体、iPSC 衍生的 CAR T 免疫疗法的生物障碍
- 批准号:
10607952 - 财政年份:2023
- 资助金额:
$ 55.07万 - 项目类别:
Personalized bioprinting technology for de novo PDL regeneration
用于 PDL 从头再生的个性化生物打印技术
- 批准号:
10667088 - 财政年份:2023
- 资助金额:
$ 55.07万 - 项目类别:
Regulating the Quality and Potency of Stem Cells with Biophysical Cues from Dynamic Nanofibrous Hydrogels for Therapeutic Purposes
利用动态纳米纤维水凝胶的生物物理线索调节干细胞的质量和效力用于治疗目的
- 批准号:
10724060 - 财政年份:2023
- 资助金额:
$ 55.07万 - 项目类别:
Mechanisms and Therapy of Chronic Graft-vs.-Host Disease
慢性移植物抗宿主病的机制和治疗
- 批准号:
10493794 - 财政年份:2022
- 资助金额:
$ 55.07万 - 项目类别:
Mechanisms and Therapy of Chronic Graft-vs.-Host Disease
慢性移植物抗宿主病的机制和治疗
- 批准号:
10698155 - 财政年份:2022
- 资助金额:
$ 55.07万 - 项目类别: