Application of Gabriella Miller Kids First Pediatric Research Data to a Predictive Model of Neuroblastoma
Gabriella Miller Kids First 儿科研究数据在神经母细胞瘤预测模型中的应用
基本信息
- 批准号:10193881
- 负责人:
- 金额:$ 16.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsApoptosisArtificial IntelligenceBrain-Derived Neurotrophic FactorCancerousChemotherapy and/or radiationChildChildhoodChromosomesClassificationClinicalComputer ModelsDataDatabasesDevelopmentDevelopmental DisabilitiesDevelopmental GeneDiagnosticDiseaseDisease OutcomeDisease ProgressionFutureGenesGenomicsGoalsImageIn VitroIndividualInfantLaboratoriesLeadLigandsMYCN geneMalignant Childhood NeoplasmMalignant NeoplasmsModelingMolecularNatureNeuroblastomaNeuronsOutcomeOutputPathogenesisPatient riskPatient-Focused OutcomesPatientsPediatric ResearchPredictive ValuePrognostic MarkerProtein Tyrosine KinaseProto-OncogenesPublishingQuality of lifeReceptor Protein-Tyrosine KinasesRegulationResearchRoleRunningSamplingSignal TransductionSolidSpeedStaging SystemSympathetic Nervous SystemTestingTumor MarkersUncertaintyangiogenesisbasecell motilitychemotherapyclinical decision supportclinical decision-makingexperimental studyhigh riskimprovedin silicoin vivointelligent algorithmmodels and simulationnervous system developmentnew therapeutic targetnoveloutcome predictionovertreatmentpatient subsetspersonalized predictionspopulation basedpredictive modelingprognosticprognostic toolreceptorrisk variantsurgical risktargeted treatmenttooltreatment optimizationtreatment strategytumor
项目摘要
Project Summary
There is currently no diagnostic tool to accurately predict pediatric neuroblastoma disease outcome that is
based on the mechanistic nature of the disease and genomic information of a child’s tumor. Neuroblastoma is
a solid, cancerous tumor of the sympathetic nervous system (SNS) that accounts for half of all cancers in
infants younger than 1 year. Uncertainties in the trajectory of disease progression has led to aggressive
radiation and chemotherapy treatments that often result in long-term developmental disabilities for children.
Determination of the critical drivers of neuroblastoma initiation and assessment of their interactions for an
individual child would help target chemotherapy and limit over-treatment, possibly resulting in an increased
quality of life and infant survival.
Our solution to this problem is to develop a predictive artificial intelligence algorithm (PredictNeuroB) and use
genomic input from a child’s tumor to test its predictive strengths to predict disease progression, identify critical
disease drivers and compare results to current clinical statistical-based algorithms. PredictNeuroB is based on
the network interactions of receptor tyrosine kinase (RTK) developmental signals and is supported by our
discovery of a critical role for trkB and its ligand brain-derived neurotrophic factor (BDNF) during SNS
development. Our published model’s prediction of early stage neuroblastoma (for infants 0-2yrs old) using
genomic information of 77 children is more accurate than any current clinical prognostic (Kasemeier-Kulesa et
al., 2018). In this study, we propose to strengthen the predictive capability of our model for a broader class of
patient data (age, stage of disease, chromosome status, MYCN amplification) by applying Gabriella Miller Kids
First neuroblastoma databases. Further, we will perform in silico perturbations of the algorithm to determine
critical drivers capable of altering neuroblastoma outcome states. At the conclusion of our study, by using a
larger set of patient-derived data with associated clinical and disease outcome information, we expect our
PredictNeuroB model will prove highly predictive for a broad class of neuroblastoma patients and support
clinical decision making in disease treatment and targeted drug therapies.
项目概要
目前还没有诊断工具可以准确预测小儿神经母细胞瘤疾病的结果
基于疾病的机制性质和儿童肿瘤的基因组信息。
交感神经系统 (SNS) 的一种实体癌性肿瘤,占所有癌症的一半
1岁以下的婴儿疾病进展轨迹的不确定性导致了攻击性。
放疗和化疗通常会导致儿童长期发育障碍。
确定神经母细胞瘤发生的关键驱动因素并评估其相互作用
个别儿童将有助于靶向化疗并限制过度治疗,这可能导致增加
生活质量和婴儿存活率。
我们解决这个问题的方法是开发预测人工智能算法(PredictNeuroB)并使用
来自儿童肿瘤的基因组输入,以测试其预测能力,以预测疾病进展,识别关键
疾病驱动因素并将结果与当前基于临床统计的算法进行比较。
受体酪氨酸激酶(RTK)发育信号的网络相互作用,并得到我们的支持
发现 trkB 及其配体脑源性神经营养因子 (BDNF) 在 SNS 过程中的关键作用
我们发布的模型对早期神经母细胞瘤(针对 0-2 岁的婴儿)的预测。
77 名儿童的基因组信息比任何当前的临床预后都更准确(Kasemeier-Kulesa 等,2017)。
al., 2018)在这项研究中,我们建议加强我们的模型对更广泛类别的预测能力。
通过应用 Gabriella Miller Kids 获取患者数据(年龄、疾病阶段、染色体状态、MYCN 扩增)
此外,我们将在计算机上对算法进行扰动来确定。
在我们的研究结论中,通过使用能够改变神经母细胞瘤结果状态的关键驱动因素。
更大的患者衍生数据以及相关的临床和疾病结果信息,我们期望我们的
PredictNeuroB 模型将证明对广泛的神经母细胞瘤患者具有高度预测性并支持
疾病治疗和靶向药物治疗的临床决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL KULESA其他文献
PAUL KULESA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL KULESA', 18)}}的其他基金
Investigating the relationship between Sympathetic Nervous System Development and Neuroblastoma
研究交感神经系统发育与神经母细胞瘤之间的关系
- 批准号:
10658015 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
A novel platform to enhance single cell interrogation of nervous system development
增强神经系统发育单细胞询问的新平台
- 批准号:
10678917 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
Application of Gabriella Miller Kids First Pediatric Research Data to a Predictive Model of Neuroblastoma
Gabriella Miller Kids First 儿科研究数据在神经母细胞瘤预测模型中的应用
- 批准号:
10757183 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
A novel platform to enhance single cell interrogation of nervous system development
增强神经系统发育单细胞询问的新平台
- 批准号:
10757179 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
In Vivo Analysis of TrkB Signaling During Sympathetic Nervous System Development and Neuroblastoma Pathogenesis
交感神经系统发育和神经母细胞瘤发病机制中 TrkB 信号传导的体内分析
- 批准号:
8995712 - 财政年份:2015
- 资助金额:
$ 16.5万 - 项目类别:
In Vivo Analysis of TrkB Signaling During Sympathetic Nervous System Development and Neuroblastoma Pathogenesis
交感神经系统发育和神经母细胞瘤发病机制中 TrkB 信号传导的体内分析
- 批准号:
8873369 - 财政年份:2015
- 资助金额:
$ 16.5万 - 项目类别:
In Vivo Analysis of the Mechanisms of Neural Crest Migration
神经嵴迁移机制的体内分析
- 批准号:
8321015 - 财政年份:2008
- 资助金额:
$ 16.5万 - 项目类别:
In Vivo Analysis of the Mechanisms of Neural Crest Migration
神经嵴迁移机制的体内分析
- 批准号:
8134840 - 财政年份:2008
- 资助金额:
$ 16.5万 - 项目类别:
In Vivo Analysis of the Mechanisms of Neural Crest Migration
神经嵴迁移机制的体内分析
- 批准号:
7532831 - 财政年份:2008
- 资助金额:
$ 16.5万 - 项目类别:
In Vivo Analysis of the Mechanisms of Neural Crest Migration
神经嵴迁移机制的体内分析
- 批准号:
7692951 - 财政年份:2008
- 资助金额:
$ 16.5万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
- 批准号:12361074
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Elucidating the Role of Multinuclearity in Healthy and Diseased Mammalian Cardiomyocytes
阐明多核在健康和患病哺乳动物心肌细胞中的作用
- 批准号:
10555524 - 财政年份:2023
- 资助金额:
$ 16.5万 - 项目类别:
Novel artificial intelligence-based approaches to understand the pathological and genetic drivers of primary tauopathies
基于人工智能的新方法来了解原发性 tau 蛋白病的病理和遗传驱动因素
- 批准号:
10701779 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
Novel artificial intelligence-based approaches to understand the pathological and genetic drivers of primary tauopathies
基于人工智能的新方法来了解原发性 tau 蛋白病的病理和遗传驱动因素
- 批准号:
10525775 - 财政年份:2022
- 资助金额:
$ 16.5万 - 项目类别:
Leveraging Multi-Scale Deep Phenotyping and Applied Machine Learning to Predict Senescent Cell Burden in Humans
利用多尺度深度表型分析和应用机器学习来预测人类衰老细胞负担
- 批准号:
10684954 - 财政年份:2021
- 资助金额:
$ 16.5万 - 项目类别: