An electro-mechanical mechanism of spike propagation in myelinated axons
有髓轴突中尖峰传播的机电机制
基本信息
- 批准号:10194107
- 负责人:
- 金额:$ 44.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nerve cells send electrical impulses down long fibers called axons. Many axons are
surrounded with a layer of insulation called the myelin sheath, a structure that ensures
that the impulses propagate very rapidly and reliably. Tiny gaps in the sheath, called
nodes of Ranvier, serve to amplify the electrical impulses, driving them forward to the
end of the axon, where chemical signals are sent to other neurons or muscle cells at
structures called synapses. In multiple sclerosis (MS) and other demyelinating diseases
the myelin sheath is damaged and the nodes of Ranvier are disrupted, slowing or even
stopping the electrical impulses from reaching the synapse. Our aim is to test a new idea
that could fundamentally change our understanding of how electrical impulses are
amplified at nodes and how they travel so fast along axons. Instead of the amplification
mechanism being purely electrical, we propose a new mechanism, in which physical
swelling of the node along a novel molecule that senses swelling, are crucial for amplifying
electrical impulses, causing them to propagate faster and more reliably. This idea was
spawned by the recent discovery that a specialized mechanically-sensitive ion channel
named TRAAK is highly concentrated at nodes. TRAAK is a potassium channel, which are
already known to be important for shaping electrical impulses. The presence of TRAAK
at nodes raises the possibility that it serves a key electro-mechanical function. This
exploratory/developmental project will answer 3 key questions: 1) To what extent do
electrical impulses cause swelling of nodes of Ranvier in the brain? 2) Are TRAAK
channels necessary for proper electrical impulse propagation in myelinated axon in the
brain? 3) Can optical manipulation of a genetically-engineered photo-controlled version
of TRAAK restore proper spike propagation in myelinated axons in the brain? Results
gleaned from this work will be of great importance for understanding fundamental
physiological processes necessary for normal function of the nervous system. These
findings will provide new insights into events that occur in demyelinating diseases such
as MS, and may lead to new treatment strategies, including the development of drugs for
mitigating their debilitating symptoms.
神经细胞将电脉冲向下降低长纤维,称为轴突。许多轴突是
周围环绕着一层称为髓鞘的绝缘层,这种结构可确保
冲动非常迅速,可靠地传播。鞘中的微小间隙,称为
Ranvier的节点,用于扩大电脉冲,将其推向前进
轴突的末端,该轴突将化学信号发送到其他神经元或肌肉细胞处
结构称为突触。在多发性硬化症(MS)和其他脱髓鞘疾病中
髓鞘受损,Ranvier的节点被破坏,放慢甚至
阻止电脉冲到达突触。我们的目标是测试一个新想法
这可能从根本上改变了我们对电动冲动的理解
在节点上放大以及它们如何沿轴突如此快速行驶。而不是放大
机制是纯电气的,我们提出了一种新机制,其中物理机制
沿着新的分子的肿胀,感知肿胀,对于放大至关重要
电脉冲,使它们更快,更可靠地传播。这个想法是
最近发现,专门的机械敏感离子通道产生了
命名的Traak高度集中在节点上。 Traak是一个钾通道,是
已经知道对于塑造电脉冲很重要。 Traak的存在
在节点上,它可以发挥关键的电力机械功能。这
探索/发展项目将回答3个关键问题:1)
电脉冲会导致大脑中兰维尔的淋巴结肿胀? 2)是traak
在髓鞘的轴突中适当的电脉冲传播所需的通道
脑? 3)可以光学操纵基因设计的照片控制版本
traak恢复大脑中髓鞘轴突中适当的尖峰繁殖?结果
从这项工作中收集到的理解将非常重要
神经系统正常功能所需的生理过程。这些
调查结果将为脱髓鞘疾病中发生的事件提供新的见解
作为MS,并可能导致新的治疗策略,包括开发
减轻他们的衰弱症状。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
RICHARD H KRAMER的其他基金
Probing GABAa receptor function and plasticity with light
用光探测 GABAa 受体功能和可塑性
- 批准号:92866999286699
- 财政年份:2017
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Targeting the retinoic acid signaling pathway for mitigating visual impairmen in retinal degenerative disorders
靶向视黄酸信号通路以减轻视网膜退行性疾病中的视力障碍
- 批准号:1029837510298375
- 财政年份:2015
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Targeting the retinoic acid signaling pathway for mitigating visual impairmen in retinal degenerative disorders
靶向视黄酸信号通路以减轻视网膜退行性疾病中的视力障碍
- 批准号:1047575310475753
- 财政年份:2015
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Targeting the retinoic acid signaling pathway for mitigating visual impairmen in retinal degenerative disorders
靶向视黄酸信号通路以减轻视网膜退行性疾病中的视力障碍
- 批准号:1084485310844853
- 财政年份:2015
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Understanding How Photoswitches Restore Visual Function in Blind Mice
了解光电开关如何恢复失明小鼠的视觉功能
- 批准号:93306539330653
- 财政年份:2015
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Understanding how photoswitches restore visual function in blindness
了解光电开关如何恢复失明者的视觉功能
- 批准号:1021275410212754
- 财政年份:2015
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Targeting the retinoic acid signaling pathway for mitigating visual impairmen in retinal degenerative disorders
靶向视黄酸信号通路以减轻视网膜退行性疾病中的视力障碍
- 批准号:1068416610684166
- 财政年份:2015
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
A universal photoswitch system for optical control of neuronal receptors
用于神经元受体光学控制的通用光电开关系统
- 批准号:77264227726422
- 财政年份:2009
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
A universal photoswitch system for optical control of neuronal receptors
用于神经元受体光学控制的通用光电开关系统
- 批准号:82554578255457
- 财政年份:2009
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
A universal photoswitch system for optical control of neuronal receptors
用于神经元受体光学控制的通用光电开关系统
- 批准号:78985627898562
- 财政年份:2009
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有条件自动驾驶汽车驾驶人疲劳演化机理与协同调控方法
- 批准号:52372341
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:52272413
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
- 批准号:1075162110751621
- 财政年份:2023
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Suprachiasmatic nucleus to kisspeptin circuit in the circadian control of reproduction
视交叉上核至 Kisspeptin 回路在生殖昼夜节律控制中的作用
- 批准号:1066015610660156
- 财政年份:2023
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Schwann Cell Reprogramming after Nerve Injury
神经损伤后雪旺细胞重编程
- 批准号:1073514710735147
- 财政年份:2023
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Melanopsin Photoreception and Signaling
黑视蛋白感光和信号传导
- 批准号:1043830610438306
- 财政年份:2022
- 资助金额:$ 44.07万$ 44.07万
- 项目类别:
Melanopsin Photoreception and Signaling
黑视蛋白感光和信号传导
- 批准号:1063028510630285
- 财政年份:2022
- 资助金额:$ 44.07万$ 44.07万
- 项目类别: